Skip to content

Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing (2020-01)

10.1016/j.conbuildmat.2019.117989

 Jayathilakage Roshan,  Rajeev Pathmanathan,  Sanjayan Jay
Journal Article - Construction and Building Materials, Vol. 240

Abstract

3D concrete printing (3DCP) using the extrusion method is a commonly used additive manufacturing technique to construct the structures layer by layer without using formwork. Therefore, the green (wet or fresh) strength of the printable concrete determines the possible printable height of the structure and the rate of printing to avoid collapse during the printing process. This paper aims to identify the buildability criteria based on the green strength of concrete and the effect of early age material properties on the stability of printed structures. The commonly available strength-based failure models based on the material yield stress and the vertical stresses induced were developed considering higher aspect ratios (height to width ratio). This may be not suitable for lower aspect ratios used in 3DCP layer geometries. Also, the frictional behaviour due to the applied vertical stresses should be considered in the material used for 3DCP applications. In this work, the Mohr-Coulomb based buildability criterion was developed and validated with laboratory experiments and numerical simulations. The laboratory experiments were carried out to establish the time-dependent material and rheological properties of 3D printable concrete mixes. Further, 3D printing of hollow circular sections was carried out to study the failure modes and to obtain the build height at the time of failure. The nonlinear finite difference model of the 3D printed sections was developed with the user-defined time-dependent material models to assess the accuracy of the proposed buildability criterion. Additionally, the proposed buildability criterion was further validated with the 3DCP experimental and numerical data presented in literature and all confirm that the proposed criterion shows higher accuracy over existing methods in assessing the buildability.

19 References

  1. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Delgado Camacho Daniel, Clayton Patricia, Brien William, Ferron Raissa et al. (2017-07)
    Applications of Additive Manufacturing in the Construction Industry:
    A Prospective Review
  4. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2019-09)
    Predication of Strength-Based Failure in Extrusion-Based 3D Concrete Printing
  5. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-01)
    Direct-Shear-Test for the Assessment of Rheological Parameters of Concrete for 3D Printing Applications
  6. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  7. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  8. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  9. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  10. Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
    Current Progress of 3D Concrete Printing Technologies
  11. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  12. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  13. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  14. Suiker Akke (2018-01)
    Mechanical Performance of Wall Structures in 3D Printing Processes:
    Theory, Design Tools and Experiments
  15. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  16. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  17. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  18. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  19. Wolfs Robert, Suiker Akke (2019-06)
    Structural Failure During Extrusion-Based 3D Printing Processes

197 Citations

  1. Kiyani Muhammad, Kamal Muhammad, Hussain Syed, Emaan Rajja et al. (2026-01)
    A Novel Arch Infill for 3D Concrete Printed Beams:
    A Comparative Study of Flexural Performance Against Truss and Solid Designs
  2. Dubey Pratik, Maurya Madan (2026-01)
    A Comprehensive Review of 3D Printing in Construction:
    Technology, Materials, and Digital Workflow
  3. Wen Kuo-Wei, Su Yen-Fang, Mo Kim, Hung Chung-Chan (2025-12)
    Time-Dependent Rheology, Green Strength, and Buildability of 3D-Printed Ultra-High Performance Concrete Incorporating Various Fiber Types and Contents
  4. Guerrero Ana, Asensio Eloy, Fernández Fernando (2025-12)
    Large‐Format Additive Manufacturing with Cement and Clays:
    Characterization Methods
  5. Fasihi Ali, Libre Nicolas (2025-11)
    Tip Penetration Test for Rapid in-Line Assessment of Static Yield Stress During 3D Concrete Printing Process
  6. Yu Hao, Zhang Weiwei, Liew Jia, Yin Binbin et al. (2025-11)
    Simulating Material Flow and Extrusion Dynamics in 3D Concrete Printing
  7. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  8. Megahed Mai, Abou Zeid Mohamed (2025-11)
    Toward Sustainable 3D Concrete Printing:
    Assessment of SCM-Superplasticizer Interactions on Rheology and Buildability
  9. Tang Jiyu, Wang Zhihang, Gao Danying, Yang Lin et al. (2025-11)
    Research Progress on 3D Printed Geopolymer Concrete
  10. González-Aviña J., Hosseinpoor Masoud, Yahia Ammar, Kohandelnia Mojtaba et al. (2025-10)
    Anionic Biopolymers to Enhance Concrete Rheological Properties for 3D Printing Applications
  11. Haripan Vislavath, Senthilnathan Shanmugaraj, Santhanam Manu, Raphael Benny (2025-10)
    Printability Assessment of Concrete 3D Printed Elements with Recycled Fine Aggregate
  12. Kul Anil, Kocaer Öznur (2025-10)
    Parametric Analysis of Design and Operational Parameters in 3D Concrete Printing of Wall Elements
  13. Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
    A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
    Rheology to Microstructure and Eco-Functionality
  14. Verma Shilpi, Parghi Anant (2025-10)
    Machine Learning-Based Prediction of Compressive Strength in Additive Manufacturing of Concrete Technology
  15. Gonsalves Nicolas, Morgan Ashlei, Thiele Heidi, Olarra Andre et al. (2025-10)
    3D Printing of Sustainable Infrastructure Using Rapid-Set Clay Concrete with Biobased Additives
  16. Paritala Spandana, Raj Shubham, Singh Prashant, Subramaniam Kolluru (2025-09)
    Designing 3D Printable Concrete by Integrating the Influence of Aggregate Characteristics
  17. Si Wen, Hopkins Ben, Khan Mehran, McNally Ciaran (2025-09)
    Towards Sustainable Mortar:
    Optimising Sika-Fiber Dosage in Ground Granulated Blast Furnace Slag and Silica Fume Blends for 3D Concrete Printing
  18. Chen Baixi, Yang Lei, Jiang Sheng (2025-09)
    Stochastic Analysis of 3D Concrete Printing Process with Curvature and Inclination by Explainable Data-Driven Modelling
  19. Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
    Industrial Waste in 3D Printed Concrete:
    A Mechanistic Review on Rheological Control and Printability
  20. Murtaza Ghulam, Baldinelli Giorgio (2025-08)
    Revolutionizing Architecture:
    3D Printing in Large Construction Industry and Strategic Innovations for Enhanced Performance
  21. Kiyani Muhammad, Hussain Syed, Emaan Rajja, Kamal Muhammad et al. (2025-08)
    Influence of Process Parameters on 3D Concrete Printing:
    A Step Towards Standardized Approaches
  22. Si Wen, Khan Mehran, McNally Ciaran (2025-08)
    Effect of Nano Silica with High Replacement of GGBS on Enhancing Mechanical Properties and Rheology of 3D Printed Concrete
  23. Lyu Xin, Ayough Pouria, Nawaz Waleed, Elchalakani Mohamed (2025-06)
    Development and Characterization of Printable Rubberised Ultra-High-Performance Concrete
  24. Chen Qinbin, Barbat Gabriel, Cervera Miguel (2025-06)
    Finite Element Buildability Analysis of 3D Printed Concrete Including Failure by Elastic Buckling and Plastic Flow
  25. Fasihi Ali, Libre Nicolas (2025-05)
    Towards Accurate In-Situ Static Yield Stress Measurement for 3D Concrete Printing:
    A Study on Novel Fast Penetration Test
  26. Das B., Prathap Y., Sandeep Ankit, Vaghamshi Keval et al. (2025-05)
    Reviewing the Materials Selection, Rheology, Durability, and Microstructural Characteristics of 3D Printed Concrete
  27. Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
    From Printing to Performance:
    A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment
  28. Kaya Ebru, Ciza Baraka, Yalçınkaya Çağlar, Felekoğlu Burak et al. (2025-05)
    A Comparative Study on the Effectiveness of Fly Ash and Blast Furnace Slag as Partial Cement Substitution in 3D Printable Concrete
  29. Tseng Kuo-Chang, Chi Maochieh, Yeih Weichung, Huang Ran (2025-04)
    Influence of Slag/Fly Ash as Partial Cement Replacement on Printability and Mechanical Properties of 3D-Printed Concrete
  30. Tran Mien, Le Thanh, Cao Nguyen, Nguyen Thi (2025-03)
    Sustainable Prospect for Entire Replacement of River Sand with Recycled Glass Aggregate in 3D Printing Concrete:
    Rheological Properties, Printability, and Alkali-Silica Reaction
  31. Gulati Hemant, Lu Tianxing (2025-03)
    Customized 3D Printable Concrete:
    A Systematic Review of Challenges, Methodologies, and Adoption Strategies
  32. Chen Wei, Pan Jinlong, Zhu Binrong, Han Jinsheng et al. (2025-03)
    Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete
  33. Liu Han, Laflamme Simon, Cardinali Amelia, Lyu Ping et al. (2025-03)
    Enhancing 3D-Printed Cementitious Composites with Recycled Carbon Fibers from Wind Turbine Blades
  34. Zuo Zibo, Zhang Yamei, Li Jin, Huang Yulin et al. (2025-03)
    Systematic Workflow for Digital Design and On-Site 3D Printing of Large Concrete Structures:
    A Case Study of a Full-Size Two-Story Building
  35. Yuan Yong, Fatoyinbo Imoleayo, Sheng Ruiyi, Wang Qiling et al. (2025-02)
    Advancing the Applicability of Recycled Municipal Solid Waste Incineration Bottom Ash as a Cement Substitute in Printable Concrete:
    Emphasis on Rheological and Microstructural Properties
  36. Park Ji-seul, Jeong Seung-Su, Hong Seungkee, Lee Seohyung et al. (2025-02)
    Mechanical Modeling for Prediction of Structural Stability of Cylindrical Structures During 3D Concrete Printing
  37. Sando Mona, Stephan Dietmar (2025-02)
    The Role of Mixing Sequence in Shaping the 3D-Printability of Geopolymers
  38. Xia Zhenjiang, Geng Jian, Zhou Zhijie, Liu Genjin (2025-01)
    Comparative Analysis of Polypropylene, Basalt, and Steel Fibers in 3D Printed Concrete:
    Effects on Flowability, Printabiliy, Rheology, and Mechanical Performance
  39. Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
    Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
    A Review
  40. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  41. Zhang Yu, Yu Zhengxing, Zhang Yunsheng, Zhang Jiufu et al. (2024-12)
    Study on the Predictive Model for Continuous Build-Height of 3D Printed Concrete Based on Printability and Early Mechanical Properties
  42. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  43. Forcael Eric, Medina Moisés, Opazo-Vega Alexander, Moreno Francisco et al. (2024-11)
    Additive Manufacturing in the Construction Industry
  44. Sahoo Pitabash, Gupta Souradeep (2024-11)
    3D Printing with Geopolymer-Stabilized Excavated Earth:
    Enhancement of Printability and Engineering-Performance Through Controlled Retardation
  45. Kaya Ebru, Ciza Baraka, Yalçınkaya Çağlar, Felekoğlu Burak et al. (2024-11)
    Effect of Hydroxypropyl-Methylcellulose and Aggregate Volume on Fresh and Hardened Properties of 3D Printable Concrete
  46. Shahzad Qamar, Li Fangyuan (2024-11)
    Assessing the Load-Bearing Capacity of 3D Printed Concrete at Early-Ages:
    An Innovative Approach
  47. Seo Eun-A, Lee Hojae (2024-10)
    Influence of Chemical Admixtures on Buildability and Deformation of Concrete for Additive Manufacturing
  48. Bao Ta, Yeakleang Muy, Abdelouhab Sandra, Courard Luc (2024-10)
    Testing Mortars for 3D Printing:
    Correlation with Rheological Behavior
  49. Althoey Fadi, Zaid Osama, Ahmed Bilal, Elhadi Khaled (2024-10)
    Impact of Double Hooked Steel-Fibers and Nano-Kaolin-Clay on Fresh Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete
  50. Chen Yuning, Xia Kailun, Dong Enlai, Cao Ruilin et al. (2024-10)
    A Mechanical Characteristic Capture-Method Considering Printing-Configurations for Buildability-Modeling in Concrete 3D Printing
  51. Tran Nhi, Tran Mien, Tran Jonathan, Nguyen Anh et al. (2024-09)
    Eco-Friendly 3D Printed Concrete Using Steel-Slag-Aggregate:
    Buildability, Printability and Mechanical Properties
  52. Chen Baixi, Zhao Xueqi, Qian Xiaoping (2024-09)
    Voxel-Based Path-Driven 3D Concrete Printing Process Simulation Framework Embedding Inter-Layer Behavior
  53. Osta Mohammad, Mukhtar Faisal (2024-09)
    Buildability-Analysis of 3D Concrete Printing Using Finite-Element-Method
  54. Zhang Qing, Bégaud Fabienne, Khatib Omar (2024-09)
    Quantitative Comparison of Elastic Modulus Measurement Techniques in Early-Age 3D Printable Mortar:
    Insights from Compression, Ultrasonic, and Microindentation Methods
  55. Zhang Hongping, Duan Shuni, Hu Zhichao, Liu Litao et al. (2024-09)
    Evaluation of Plasticity and Determination of Deformation Index of 3D Printed Composite Cement-Based Materials
  56. Huseien Ghasan, Tan Shea, Saleh Ali, Lim Nor et al. (2024-08)
    Test-Procedures and Mechanical Properties of Three-Dimensional Printable Concrete Enclosing Different Mix-Proportions:
    A Review and Bibliometric Analysis
  57. Xu Wen, Jiang Dengjie, Zhao Qian, Wang Linbing (2024-08)
    Study on Printability of 3D Printing Carbon-Fiber-Reinforced Eco-Friendly Concrete:
    Characterized by Fluidity and Consistency
  58. Shahzad Qamar, Akbar Muhammad, Alzara Majed, Yosri Ahmed et al. (2024-07)
    Time-Dependent Buildability Evaluation of 3D Printed Concrete:
    Experimental Validation and Numerical Simulation
  59. Kamakshi Tippabhotla, Thakur Manideep, Subramaniam Kolluru (2024-07)
    Formulating Printable Concrete Mixtures Based on Paste-Rheology and Aggregate-Content:
    Application to Alkali-Activated Binders
  60. Malik Umair, Riaz Raja, Rehman Saif, Usman Muhammad et al. (2024-07)
    Advancing Mix-Design Prediction in 3D Printed Concrete:
    Predicting Anisotropic Compressive Strength and Slump-Flow
  61. Ramesh Akilesh, Rajeev Pathmanathan, Sanjayan Jay (2024-07)
    Application of Textile Reinforcement for 3D Concrete Printed Structures
  62. Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2024-07)
    CO2-Driven Additive Manufacturing of Sustainable Steel-Slag-Mortars
  63. Barve Prasad, Bahrami Alireza, Shah Santosh (2024-07)
    A Comprehensive Review on Effects of Material-Composition, Mix-Design, and Mixing-Regimes on Rheology of 3D Printed Geopolymer Concrete
  64. Şahin Hatice, Mardani Ali, Mardani Naz (2024-07)
    Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete
  65. Lee Yoon, Lee Sang, Kim Jae, Jeong Hoseong et al. (2024-07)
    Inter-Layer Bond Strength of 3D Printed Concrete Members with Ultra-High-Performance Concrete Mix
  66. Duarte Gonçalo, Duarte José, Brown Nathan, Memari Ali et al. (2024-06)
    Design for Early-Age Structural Performance of 3D Printed Concrete Structures:
    A Parametric Numerical Modeling Approach
  67. Gu Yucun, Khayat Kamal (2024-06)
    Effect of Superabsorbent Polymer on 3D Printing Characteristics as Rheology-Modified-Agent
  68. Kanagasuntharam Sasitharan, Ramakrishnan Sayanthan, Sanjayan Jay (2024-06)
    Encapsulation of Sodium-Silicate to Attain on Demand Buildability Enhancement in Concrete 3D Printing
  69. Razzaghian Ghadikolaee Mehrdad, Pan Zhu, Cerro-Prada Elena, Korayem Asghar (2024-06)
    Fresh and Hardened Properties of 3D Printing Mortar Modified by Halloysite-Nanotube
  70. Gu Yucun, Khayat Kamal (2024-05)
    Extrudability Window and Off-Line Test-Methods to Predict Buildability of 3D Printing Concrete
  71. Gu Yucun, Zheng Shuyi, Ma Hongyan, Long Wujian et al. (2024-05)
    Effect of Absorption Kinetics of Superabsorbent Polymers on Printability and Inter-Layer Bond of 3D Printing Concrete
  72. Luo Surong, Li Wenqiang, Wang Dehui (2024-05)
    Study on Bending Performance of 3D Printed PVA-Fiber-Reinforced Cement-Based Material
  73. An Dong, Zhang Yixia, Yang Chunhui (2024-05)
    Incorporating Coarse Aggregates into 3D Concrete Printing from Mixture Design and Process-Control to Structural Behavior and Practical Applications:
    A Review
  74. Wei Ying, Han Song, Yu Shiwei, Chen Ziwei et al. (2024-05)
    Parameter Impact on 3D Concrete Printing from Single to Multi-Layer Stacking
  75. Yang Liuhua, Gao Yang, Chen Hui, Jiao Huazhe et al. (2024-04)
    3D Printing Concrete Technology from a Rheology Perspective:
    A Review
  76. Wei Ying, Han Song, Chen Ziwei, Lu Jianxian et al. (2024-04)
    Numerical Simulation of 3D Concrete Printing Derived from Printer Head and Printing Process
  77. Chen Yidong, Zhang Yunsheng, Liu Zhiyong, Zhang Wenhua et al. (2024-03)
    Quantitative Surface Quality Evaluation for 3D Printed Concrete with Coarse Aggregate Through 3D Scanning
  78. Sheng Zhaoliang, Zhu Binrong, Cai Jingming, Li Xuesen et al. (2024-03)
    Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete
  79. Ramesh Akilesh, Rajeev Pathmanathan, Sanjayan Jay (2024-02)
    Bond-Slip Behavior of Textile-Reinforcement in 3D Printed Concrete
  80. Khan Shoukat, İlcan Hüseyin, Imram Ramsha, Aminipour Ehsan et al. (2024-01)
    The Impact of Nozzle-Diameter and Printing Speed on Geopolymer-Based 3D Printed Concrete Structures:
    Numerical Modeling and Experimental Validation
  81. Prem Prabhat, Ambily Parukutty, Kumar Shankar, Ghodke Swapnil (2024-01)
    A Theoretical Model to Predict the Structural Buildability of 3D Printable Concrete
  82. Rehman Atta, Kim Ik-Gyeom, Kim Jung-Hoon (2024-01)
    Towards Full Automation in 3D Concrete Printing Construction:
    Development of an Automated and In-Line Test-Method for In-Situ Assessment of Structural Build-Up and Quality of Concrete
  83. Sahai Rajan, Bisht Ravindra, Malviya Nitesh, Kumar Shivam et al. (2024-01)
    Aspects of Waste-Material-Utilization and 3D Concrete Printer Development-Approach:
    A Review
  84. Yu Hao, Zhang Weiwei, Yin Binbin, Sun Weikang et al. (2024-01)
    Modeling Extrusion-Process and Layer-Deformation in 3D Concrete Printing via Smoothed Particle-Hydrodynamics
  85. Christ Julian, Perrot Arnaud, Ottosen Lisbeth, Koss Holger (2023-12)
    Rheological Characterization of Temperature-Sensitive Biopolymer-Bound 3D Printing Concrete
  86. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2023-12)
    3D Concrete Printing in Air and Under Water:
    A Comparative Study on the Buildability and Inter-Layer Adhesion
  87. Li Yeou-Fong, Tsai Pei-Jen, Syu Jin-Yuan, Lok Man-Hoi et al. (2023-12)
    Mechanical Properties of 3D Printed Carbon Fiber-Reinforced Cement Mortar
  88. An Dong, Zhang Yixia, Yang Chunhui (2023-11)
    Numerical Modelling of 3D Concrete Printing:
    Material-Models, Boundary-Conditions and Failure-Identification
  89. Christ Julian, Leusnik Sander, Koss Holger (2023-10)
    Multi-Axial 3D Printing of Biopolymer-Based Concrete Composites in Construction
  90. Thib Raghed, Belayachi Naima, Bouarroudj Mohamed, Bulteel David et al. (2023-10)
    A Methodology for Designing 3D Printable Mortar Based on Recycled Sand
  91. Perez-Rivera Anthony, Kreiger Eric, Stidwell Samuel, Stynoski Peter et al. (2023-10)
    Finite-Element Modeling of Reinforced Additively Constructed Concrete Structures
  92. Chang Ze, Chen Yu, Schlangen Erik, Šavija Branko (2023-09)
    A Review of Methods on Buildability Quantification of Extrusion-Based 3D Concrete Printing:
    From Analytical Modelling to Numerical Simulation
  93. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2023-09)
    Printability and Early Mechanical Properties of Material-Composition Modified 3D Printing Engineered Cementitious Composites Based on the Response-Surface-Methodology
  94. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2023-09)
    Rapid Early-Age Strength Development of In-Line Activated Geopolymer for Concrete 3D Printing
  95. Liu Zhenbang, Li Mingyang, Quah Tan, Wong Teck et al. (2023-09)
    Comprehensive Investigations on the Relationship Between the 3D Concrete Printing Failure Criterion and Properties of Fresh-State Cementitious Materials
  96. Rehman Atta, Perrot Arnaud, Birru Bizu, Kim Jung-Hoon (2023-09)
    Recommendations for Quality-Control in Industrial 3D Concrete Printing Construction with Mono-Component Concrete:
    A Critical Evaluation of Ten Test-Methods and the Introduction of the Performance-Index
  97. Ji Yameng, Poullain Philippe, Leklou Ali (2023-09)
    The Selection and Design of Earthen Materials for 3D Printing
  98. Shahzad Qamar, Li Fangyuan (2023-09)
    An Innovative Method for Buildability-Assessment of 3D Printed Concrete at Early-Ages
  99. Nunes Gabrielly, Anjos Marcos, Lins Ana, Negreiros Ana et al. (2023-08)
    Evaluation of the Mechanical Behavior of Representative Volumetric Elements of 3DCP Masonry-Mixtures with Partial Replacement of Cement by Limestone-Filler and Metakaolin
  100. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  101. Pedrosa Ana, Gaspar Florindo (2023-08)
    Rheology-Assessment of Mortar-Materials for Additive Manufacturing
  102. Mogra Mihir, Asaf Ofer, Sprecher Aaron, Amir Oded (2023-08)
    Design-Optimization of 3D Printed Concrete Elements Considering Buildability
  103. Wang Qing, Ren Xiaodan, Li Jie (2023-08)
    Damage-Rheology Model for Predicting 3D Printed Concrete Buildability
  104. Pott Ursula, Jakob Cordula, Wolf Julian, Stephan Dietmar (2023-06)
    Comparison of Physical and Physico-Chemical Methods for 3D Printing Application with the Focus on the Unconfined Uniaxial Compression-Test
  105. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  106. Antoni Antoni, Adi N., Kurniawan M., Agraputra A. et al. (2023-06)
    The Influence of Viscosity-Modifying Agent and Calcium-Carbonate on 3D Printing Mortar Characteristics
  107. Oh Sangwoo, Hong Geuntae, Choi Seongcheol (2023-05)
    Determining the Effect of Superabsorbent Polymers, Macrofibers, and Resting Time on the Rheological Properties of Cement Mortar Using Analysis of Variance:
    A 3D Printing Perspective
  108. Haar Bjorn, Kruger Jacques, Zijl Gideon (2023-05)
    Off-Site Construction with 3D Concrete Printing
  109. Kanagasuntharam Sasitharan, Ramakrishnan Sayanthan, Muthukrishnan Shravan, Sanjayan Jay (2023-05)
    Effect of Magnetorheological Additives on the Buildability of 3D Concrete Printing
  110. Bhushan Jindal Bharat, Jangra Parveen (2023-05)
    3D Printed Concrete:
    A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications
  111. Razzaghian Ghadikolaee Mehrdad, Cerro-Prada Elena, Pan Zhu, Korayem Asghar (2023-04)
    Nanomaterials as Promising Additives for High-Performance 3D Printed Concrete:
    A Critical Review
  112. Diab Zeinab, Do Duc, Rémond Sébastien, Hoxha Dashnor (2023-04)
    Probabilistic Prediction of Structural Failure During 3D Concrete Printing Processes
  113. Rajeev Pathmanathan, Ramesh Akilesh, Navaratnam Satheeskumar, Sanjayan Jay (2023-04)
    Using Fiber Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing
  114. Kilic Ugur, Ma Ji, Baharlou Ehsan, Ozbulut Osman (2023-03)
    Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites
  115. Tamimi Adil, Alqamish Habib, Khaldoune Ahlam, Alhaidary Haidar et al. (2023-03)
    Framework of 3D Concrete Printing Potential and Challenges
  116. Khan Shoukat, Koç Muammer (2023-03)
    Buildability-Analysis of 3D Concrete Printing Process:
    A Parametric Study Using Design of Experiment-Approach
  117. Tran Mien, Vu Tran, Nguyen Thi (2023-01)
    Simplified Assessment for One-Part 3D Printable Geopolymer Concrete Based on Slump and Slump-Flow Measurements
  118. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites
  119. Uddin Md (2022-12)
    Influence of 3D Printable Sustainable Concrete and Industrial Waste on Industry 5.0
  120. Li Zihan, Liu Huanbao, Cheng Xiang, Nie Ping et al. (2022-12)
    Improvement of 3D Printing Cement-Based Material-Process:
    Parameter Experiment and Analysis
  121. Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
    Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete
  122. Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
    Modelling of 3D Concrete Printing Process:
    A Perspective on Material and Structural Simulations
  123. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-11)
    Criticality of Binder-Aggregate Interaction for Buildability of 3D Printed Concrete Containing Limestone-Calcined-Clay
  124. Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
    Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing
  125. Li Shuai, Nguyen-Xuan Hung, Tran Jonathan (2022-11)
    Digital Design and Parametric Study of 3D Concrete Printing on Non-Planar Surfaces
  126. Khan Shoukat, Koç Muammer (2022-10)
    Numerical Modelling and Simulation for Extrusion-Based 3D Concrete Printing:
    The Underlying Physics, Potential, and Challenges
  127. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  128. Liu Chao, Chen Yuning, Zhang Zedi, Niu Geng et al. (2022-10)
    Study of the Influence of Sand on Rheological Properties, Bubble Features and Buildability of Fresh Foamed Concrete for 3D Printing
  129. Mortada Youssef, Mohammad Malek, Mansoor Bilal, Grasley Zachary et al. (2022-09)
    Development of Test-Methods to Evaluate the Printability of Concrete Materials for Additive Manufacturing
  130. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  131. Ma Lei, Zhang Qing, Lombois-Burger Hélène, Jia Zijian et al. (2022-09)
    Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage
  132. Pott Ursula, Wolf Christoph, Petryna Yuri, Stephan Dietmar (2022-09)
    Evaluation of the Unconfined Uniaxial Compression-Test to Study the Evolution of Apparent Printable Mortar-Properties During the Early-Age Transition-Regime
  133. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  134. Aydin Eylül, Kara Burhan, Bundur Zeynep, Özyurt Nilüfer et al. (2022-08)
    A Comparative Evaluation of Sepiolite and Nano-Montmorillonite on the Rheology of Cementitious Materials for 3D Printing
  135. Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
    Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite
  136. Chang Ze, Liang Minfei, Xu Yading, Schlangen Erik et al. (2022-08)
    3D Concrete Printing:
    Lattice Modeling of Structural Failure considering Damage and Deformed Geometry
  137. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
    Rheometry for Concrete 3D Printing:
    A Review and an Experimental Comparison
  138. Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
    Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
    On the Evaluation of Buildability
  139. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  140. Chang Ze, Zhang Hongzhi, Liang Minfei, Schlangen Erik et al. (2022-07)
    Numerical Simulation of Elastic Buckling in 3D Concrete Printing Using the Lattice-Model with Geometric Non-Linearity
  141. Lee Jin, Kim Jae (2022-06)
    Matric-Suction and Its Effect on the Shape Stability of 3D Printed Concrete
  142. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-06)
    Mitigating Early-Age Cracking in 3D Printed Concrete Using Fibers, Superabsorbent Polymers, Shrinkage Reducing Admixtures, B-CSA Cement and Curing Measures
  143. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  144. Wijaya Ignasius, Kreiger Eric, Masud Arif (2022-05)
    An Elastic‐Inelastic Model and Embedded Bounce‐Back-Control for Layered Printing with Cementitious Materials
  145. Ramakrishnan Sayanthan, Kanagasuntharam Sasitharan, Sanjayan Jay (2022-05)
    In-Line Activation of Cementitious Materials for 3D Concrete Printing
  146. Sergis Vasileios, Ouellet-Plamondon Claudiane (2022-04)
    D-Optimal Design of Experiments Applied to 3D High-Performance Concrete Printing Mix-Design
  147. Uhlík Adam, Buch Mário, Unčík Stanislav (2022-04)
    Effecting the Rheological Properties of Composites for 3D Printing Technology in Construction
  148. Marchment Taylor, Sanjayan Jay (2022-04)
    Lap Joint Reinforcement for 3D Concrete Printing
  149. Pan Tinghong, Jiang Yaqing, Ji Xuping (2022-03)
    Inter-Layer Bonding Investigation of 3D Printing Cementitious Materials with Fluidity-Retaining Polycarboxylate-Superplasticizer and High-Dispersion Polycarboxylate Superplasticizer
  150. Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
    3D Concrete Printing Modelling of Thin-Walled Structures
  151. Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
    Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
  152. Ahmed Sara, Yehia Sherif (2022-02)
    Evaluation of Workability and Structuration-Rate of Locally Developed 3D Printing Concrete Using Conventional Methods
  153. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  154. Tripathi Avinaya, Nair Sooraj, Neithalath Narayanan (2022-01)
    A Comprehensive Analysis of Buildability of 3D Printed Concrete and the Use of Bi-Linear Stress-Strain Criterion-Based Failure Curves Towards Their Prediction
  155. Ting Guan, Quah Tan, Lim Jian, Tay Yi et al. (2022-01)
    Extrudable Region Parametrical Study of 3D Printable Concrete Using Recycled-Glass Concrete
  156. Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
    3D Printable Alkali-Activated Concretes for Building Applications:
    A Critical Review
  157. Jones Scott, Hipp Julie, Allen Andrew, Gagnon Cedric (2021-12)
    Rheology and Microstructure Development of Hydrating-Tricalcium-Silicate:
    Implications for Additive Manufacturing in Construction
  158. Diggs-McGee Brandy, Kreiger Eric (2021-12)
    Using Isolated Temporal Analysis to Aid in the Assessment of Structural Element Quality for Additive Construction
  159. Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
    Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure
  160. Liu Xuanting, Sun Bohua (2021-11)
    The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes
  161. Kondepudi Kala, Subramaniam Kolluru (2021-11)
    Extrusion-Based Three-Dimensional Printing Performance of Alkali-Activated Binders
  162. Paiva Maria, Duarte Fonseca Rocha Larissa, Fernandez Letízia, Toledo Filho Romildo et al. (2021-11)
    Rheological Properties of Metakaolin-Based Geopolymers for Three-Dimensional Printing of Structures
  163. Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
    On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing
  164. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Khayat Kamal et al. (2021-10)
    Digital Fabrication of Eco-Friendly Ultra-High-Performance Fiber-Reinforced Concrete
  165. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2021-09)
    Modelling the Inter-Layer Bond Strength of 3D Printed Concrete with Surface Moisture
  166. Wang Yu, Jiang Yaqing, Pan Tinghong, Yin Kangting (2021-08)
    The Synergistic Effect of Ester-Ether Copolymerization Thixo-Tropic Superplasticizer and Nano-Clay on the Buildability of 3D Printable Cementitious Materials
  167. Che Yujun, Tang Shengwen, Yang Huashan, Li Weiwei et al. (2021-08)
    Influences of Air-Voids on the Performance of 3D Printing Cementitious Materials
  168. Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
    Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing
  169. Duarte Gonçalo, Brown Nathan, Memari Ali, Duarte José (2021-07)
    Learning from Historical Structures under Compression for Concrete 3D Printing Construction
  170. Yang Huashan, Che Yujun, Shi Mengyuan (2021-07)
    Influences of Calcium-Carbonate-Nano-Particles on the Workability and Strength of 3D Printing Cementitious Materials Containing Limestone-Powder
  171. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  172. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  173. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  174. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2021-06)
    Technologies for Improving Buildability in 3D Concrete Printing
  175. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  176. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2021-05)
    Extrusion Rheometer for 3D Concrete Printing
  177. Chang Ze, Xu Yading, Chen Yu, Gan Yidong et al. (2021-05)
    A Discrete Lattice-Model for Assessment of Buildability Performance of 3D Printed Concrete
  178. Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
    Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars
  179. Marchment Taylor, Sanjayan Jay (2021-04)
    Reinforcement Method for 3D Concrete Printing Using Paste-Coated Bar Penetrations
  180. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  181. Cho Seung, Kruger Jacques, Rooyen Algurnon, Zijl Gideon (2021-03)
    Rheology and Application of Buoyant Foam-Concrete for Digital Fabrication
  182. Kondepudi Kala, Subramaniam Kolluru (2021-02)
    Formulation of Alkali-Activated Fly-Ash-Slag Binders for 3D Concrete Printing
  183. Rubin Ariane, Hasse Jéssica, Repette Wellington (2021-01)
    The Evaluation of Rheological Parameters of 3D Printable Concretes and the Effect of Accelerating-Admixture
  184. Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
    Improving Performance of Additive Manufactured Concrete:
    A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods
  185. Chen Mingxu, Yang Lei, Zheng Yan, Li Laibo et al. (2021-01)
    Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites
  186. Panda Biranchi, Sonat Cem, Yang En-Hua, Tan Ming et al. (2020-12)
    Use of Magnesium-Silicate-Hydrate (M-S-H) Cement Mixes in 3D Printing Applications
  187. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  188. Antoni Antoni, Widjaya David, Wibowo Alexander, Chandra Jimmy et al. (2020-12)
    Using Calcium Oxide and Accelerator to Control the Initial Setting-Time of Mortar in 3D Concrete Printing
  189. Jacquet Yohan, Perrot Arnaud, Picandet Vincent (2020-11)
    Assessment of Asymmetrical Rheological Behavior of Cementitious Material for 3D Printing Application
  190. Sanjayan Jay, Jayathilakage Roshan, Rajeev Pathmanathan (2020-11)
    Vibration-Induced Active Rheology-Control for 3D Concrete Printing
  191. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  192. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication
  193. Marchment Taylor, Sanjayan Jay (2020-09)
    Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing
  194. Ortega Guillermo, Madrid Javier, Olsson Nils, Tenorio Ríos José (2020-08)
    The Application of 3D Printing Techniques in the Manufacturing of Cement-Based Construction Products and Experiences Based on the Assessment of Such Products
  195. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  196. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2020-07)
    Characterizing Extrudability for 3D Concrete Printing Using Discrete Element Simulations
  197. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2020-04)
    A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete

BibTeX
@article{jaya_raje_sanj.2020.YSCtAtBo3CP,
  author            = "Roshan I. Jayathilakage and Pathmanathan Rajeev and Jay Gnananandan Sanjayan",
  title             = "Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing",
  doi               = "10.1016/j.conbuildmat.2019.117989",
  year              = "2020",
  journal           = "Construction and Building Materials",
  volume            = "240",
}
Formatted Citation

R. I. Jayathilakage, P. Rajeev and J. G. Sanjayan, “Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing”, Construction and Building Materials, vol. 240, 2020, doi: 10.1016/j.conbuildmat.2019.117989.

Jayathilakage, Roshan I., Pathmanathan Rajeev, and Jay Gnananandan Sanjayan. “Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing”. Construction and Building Materials 240 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117989.