Skip to content

#rheology

Keywords by Co - Occurrence

  1. Zhang Junyi, Zhang Chao, Chen Tiefeng, Li Ruisen et al. (2026-01)
    Biochar as the Rheological Modifier in Three-Dimensional Printed Concrete
  2. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud (2026-01)
    Effect of Fly Ash, Basalt Fiber and Attapulgite Nanoclay on the Fresh Properties, Rheology and Shrinkage Behaviour of Printable Concrete
  3. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  4. Tinoco Matheus, Márquez Álvaro, Ramallo Laura, Barluenga Gonzalo et al. (2026-01)
    Effect of Cellulose Microfibers on Rheological Properties and Printability of 3D Printable Cement-Based Composites
  5. Murali Gunasekaran, Kravchenko Ekaterina, Yuvaraj Divya, Avudaiappan Siva (2025-12)
    Next-Generation Green Construction:
    3D-Printed Geopolymer Concrete with Optimized Rheology, Mechanical Performance, and Environmental Efficiency
  6. Kim Seung, Kim Jae (2025-12)
    Vibration-Assisted Rheological Control for 3D Printing of Precast Concrete Modules
  7. Ferrari Lucia, Rizzieri Giacomo, Ferrara Liberato, Franzoni Elisa (2025-12)
    Rheological Control of Cementitious Composites Incorporating Ceramic Wastes for 3D Printing Applications
  8. Yan Yufei, Zhang Mo, Ma Guowei (2025-12)
    Synergistic Effect of Multi-Supplementary Materials on Rheology and Ultra-Early Stage Properties of 3D Printable FA-GBFS Geopolymer
  9. Jacobi Ando, Zöllner Jan-Phillip, Hack Norman, Mai (née Dressler) Inka (2025-12)
    Encasement of Pre-Placed Reinforcement in Injection 3D Concrete Printing:
    The Effect of Rheology and Process Parameters
  10. Wen Kuo-Wei, Su Yen-Fang, Mo Kim, Hung Chung-Chan (2025-12)
    Time-Dependent Rheology, Green Strength, and Buildability of 3D-Printed Ultra-High Performance Concrete Incorporating Various Fiber Types and Contents
  11. Cheng Zhangqi, Li Keyan, Liu Renlong (2025-12)
    Sustainable 3D Printed Engineered Cementitious Composites Incorporating Recycled Ceramic Materials:
    Rheology and Mechanical Behavior
  12. Liu Xuelin, Kong Jiafeng, Chen Yidong, Wang Liang et al. (2025-12)
    Rheology and Printability Control of Low-Carbon 3D-Printed Cementitious Materials via Circular Use of Recycled Concrete Powder
  13. Cai Xianhuan, Chen Fan, Zhao Zhihui, Xiao Peng et al. (2025-12)
    Impact of Early Particle Characteristics on Rheology and Buildability in 3D-Printed Magnesium Silicon Potassium Phosphate Cement Incorporating Fly Ash
  14. Ramezani Mahyar, Kilic Ugur, Sherif Muhammad, Arce Gabriel et al. (2025-12)
    Rheological Properties and Mechanical Response of Bio-Based Graphene Enhanced Additively Manufactured Cementitious Composites
  15. Feng Hu, Yuan Xiang, Yu Zhenyu, Guo Aofei et al. (2025-12)
    Printability and Rheological Properties of 3D Printing Ultra-High Ductility Magnesium Phosphate Cement-Based Composites
  16. Si Wen, Khan Mehran, McNally Ciaran (2025-11)
    Rheological Optimization and Mechanical Performance Assessment of High-Volume GGBS-Silica Fume Mortars for 3D Printing
  17. Solaiappan Kamesh, Foruzanmehr M. (2025-11)
    A Rheological Test Method for Determining the Printability Zone of Cementitious 3D Printers
  18. Sikora Paweł, Federowicz Karol, Skibicki Szymon, Techman Mateusz et al. (2025-11)
    Demonstration of 3D-Printed Concrete Containing Fine Recycled Concrete Aggregates and Recycled Concrete Powder:
    Rheology, Early-Age, Shrinkage, Mechanical, and Durability Performance.
  19. Ghodke Swapnil, Singh Bhupinder, Chowdhury Shubhankar (2025-11)
    Some Insights on Role of Water Film-Thickness in Rheology of Coarse Aggregate-Based 3D Printable Concrete
  20. Oh Sangwoo, Lee Jinsuk, Oh Gyujong, Choi Seongcheol (2025-11)
    Effects of the Combined Incorporation of Superabsorbent Polymers and Polyvinyl Alcohol Fibers on Material Properties of 3D Printable Mortar:
    Rheology, Shrinkage, and Mechanical Behavior
  21. Zhao Yu, Shen Guanghai, Zhu Lingli, Ding Yahong et al. (2025-11)
    Multi-Scale Analysis of 3D Printable High-Strength Engineered Cementitious Composite with Carbon and Polyethylene Fibers:
    Rheology, Printability and Hydration Kinetics in Structural Components
  22. Sun Yan, Du Guoqiang, Mudasir Maryam (2025-11)
    Rheological Investigations of Fresh Fiber-Reinforced Cementitious Composites Using Hydrophobic / Hydrophilic UHMWPE Fibers for 3D Concrete Printing Evaluation
  23. Megahed Mai, Abou Zeid Mohamed (2025-11)
    Toward Sustainable 3D Concrete Printing:
    Assessment of SCM-Superplasticizer Interactions on Rheology and Buildability
  24. González-Aviña J., Hosseinpoor Masoud, Yahia Ammar, Kohandelnia Mojtaba et al. (2025-10)
    Anionic Biopolymers to Enhance Concrete Rheological Properties for 3D Printing Applications
  25. Liu Junli, Zhang Shipeng, Hao Lucen, Wu Bo et al. (2025-10)
    Rapid Rheology Control and Stiffening of 3D-Printed Cement Mortar via CO2 Flash Mixing in a 2K Printing System
  26. Ngo Than, Li Shuai, Huynh Tien, Zhang Y. et al. (2025-10)
    3D Printable Hemp Concrete:
    Rheological, Mechanical, and Microstructural Properties
  27. Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
    A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
    Rheology to Microstructure and Eco-Functionality
  28. Gajjar Parth, Gajjar T., Tangirala Aniruddha, Shrestha Ajad (2025-10)
    Advancing 3D Printing in Construction:
    Rheological Behaviors of Cementitious Composites with Supplementary Materials
  29. Ali Muhammad, Qian Hui, Umar Muhammad, Fenglin Liu et al. (2025-10)
    Rheological, Mechanical, and Self-Recovery Performance of 3D-Printed ECC Reinforced with Shape Memory Alloy Fibers
  30. Sun Yan, Mudasir Maryam (2025-09)
    3D Printing Performance of Strain-Hardening Cementitious Composites with Different UHMWPE Fibers in Correlation with Rheology
  31. Jeyifous Olubunmi, Schönsee Eric, Strangfeld Christoph, Hüsken Götz (2025-09)
    Investigating the Impact of Material Rheology on Geometric Accuracy in 3D Concrete Printing Using Real-Time Monitoring
  32. Xie Xiangyu, Liu Xuemei, Zhang Nan, Zhang Lihai et al. (2025-09)
    Capillary Extrusion Rheometry for Characterising Wall Slip Behaviour in 3D Printed Concrete
  33. Zhou Juanlan, Shi Xiangwen, Zheng Hongrun, Jin Ruoyu et al. (2025-09)
    Investigating the Effects of Hybrid PVA/BF Fibers in Low-Carbon 3D Printed Concrete with Recycled Aggregates:
    Rheology, Strength, and Anisotropy
  34. Xu Bin, Sun Zhaoyang, Sun Ming, Chen Binmeng (2025-09)
    Realizing Rheological Manipulation by Adjusting Initiator Concentrations for In-Situ Polymerization:
    Towards 3D Concrete Printing Applications
  35. Sabouni Reem, Martini Samer (2025-09)
    Characterization of 3D Printed Concrete Mixtures Developed Using Local UAE Materials Based on Rheological Properties
  36. Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
    Industrial Waste in 3D Printed Concrete:
    A Mechanistic Review on Rheological Control and Printability
  37. Márquez Álvaro, Varela Hugo, Barluenga Gonzalo (2025-09)
    Influence of Rheology Modifying Admixtures on the Buildability of 3D Printing Cement-Based Mortars
  38. Safanelli Nicollas, Schackow Adilson, Effting Carmeane, Matos Paulo (2025-09)
    The Effect of Crystalline Nanocellulose on the Rheology, Hydration of Cement Pastes, and Buildability of 3D-Printed Concrete
  39. Alonso-Cañon Sara, Alonso-Estebanez Alejandro, Yoris-Nobile Adrian, Brunčič Ana et al. (2025-08)
    Rheological Parameter Ranges for 3D Printing Sustainable Mortars Using a New Low-Cost Rotational Rheometer
  40. Zhang Jiawei, Sun Yuanfeng, Bu Dechao, Lu Cong et al. (2025-08)
    Rheology-Tailored 3DP-UHPC:
    From Enhanced Printability to Impact Performance
  41. Zhou Yuecheng, Xiao Sai, Li Haonian, Wang Chong et al. (2025-08)
    Study on the Rheological Properties and Printability of Multi-Scale Material Modified Mortar for 3D Printing
  42. Wang Cheinfei, Lian Junyin, Fang Yunhui, Fan Guangming et al. (2025-08)
    Rheological Optimization of 3D-Printed Cementitious Materials Using Response Surface Methodology
  43. Wang Chaofan, Chen Bing, Wang Yong, Vo Thanh et al. (2025-08)
    Influencing Mechanism of Magnesium-to-Phosphate Ratio on the Rheology and Microstructure Development of 3D-Printed Magnesium Phosphate Cement at Early Hydration
  44. Si Wen, Carr Liam, Zia Asad, Khan Mehran et al. (2025-08)
    Advancing 3D Printable Concrete with Nanoclays:
    Rheological and Mechanical Insights for Construction Applications
  45. Aydin Tolga, Sandalci Ilgin, Aydin Eylül, Kara Burhan et al. (2025-08)
    Investigation of Bacterial Cells and Clays as Rheology Modifiers in 3D Concrete Printing
  46. Si Wen, Khan Mehran, McNally Ciaran (2025-08)
    Effect of Nano Silica with High Replacement of GGBS on Enhancing Mechanical Properties and Rheology of 3D Printed Concrete
  47. Xiahou Xiaer, Ding Xingyuan, Yu Ke-Ke, Lu Cong (2025-08)
    From Waste to Strength:
    Sustainable Valorization of Modified Recycled PET Fibers for Rheological Control and Performance Enhancement in 3D Printed Concrete
  48. Vico Lujano Raúl, Pérez Villarejo Luis, Novais Rui, Hidalgo-Torrano Pilar et al. (2025-07)
    Optimized Mortar Formulations for 3D Printing:
    A Rheological Study of Cementitious Pastes Incorporating Potassium-Rich Biomass Fly Ash Wastes
  49. Amdouni Marwen, Nasraoui Helmi, Rezgui Mohamed, Trabelsi Ali (2025-07)
    Use of the RDPP-SF Method to Analyze Rheology Variation in an AM-Cement-Based Process
  50. Ramakrishnan Sayanthan, Pasupathy Kirubajiny, Manalo Allan, Sanjayan Jay (2025-07)
    Rheological, Mechanical and Fire Resistance Performance of Waste Glass Activated Geopolymers for Concrete 3D Printing
  51. Pan Keheng, Cheng Yinhan, Qu Guangfei, Yuan Zheng et al. (2025-07)
    Development and Optimization of Geopolymer-Based 3D Printing Materials Utilizing Industrial Solid Waste:
    Rheological Properties and Practical Applications
  52. Jin Yuan, Jiang Chengzhi, Gan Xingyu, Sun Zhaoyang et al. (2025-07)
    Enhancing the Printability of 3D Printed White Cementitious Materials with Accelerators:
    Evolution of Early-Age Hydration and Rheology
  53. Zafar Muhammad, Javadnejad Farid, Hojati Maryam (2025-07)
    Optimizing Rheological Properties of 3D Printed Cementitious Materials via Ensemble Machine Learning
  54. Mim Nusrat, Hosan Anwar, Shaikh Faiz, Sarker Prabir (2025-07)
    Rheological and Early Age Mechanical Properties of 3D Printed Concrete Containing Copper Heap Leach Residue as Fine Aggregate
  55. Falliano Devid, Restuccia Luciana, Tulliani Jean-Marc, Ferro Giuseppe (2025-07)
    Biochar to Enhance Curing and Rheology of Mortars without Formwork
  56. Gasmi Abrar, Guessasma Mohamed, Davidovits Ralph, Pélegris Christine (2025-06)
    Unveiling Additive Effects in 3D Printed Geopolymer Composites:
    A Multi-Scale Analysis Coupling Rheological Insights and CFD-Optimized Deposition
  57. Jacquet Yohan, Kawashima Shiho, Spangenberg Jon (2025-06)
    Unveiling the Structural Build-up 3D Printable Cement-Based Materials:
    From Small Amplitude Oscillatory Shear (SAOS) To Extensional (SAOE) Rheological Workflows
  58. Sbardelotto Eduardo, Vieira Manuel, Ferreira dos Santos Karyne, Pereira dos Santos Samuel et al. (2025-06)
    Exploratory Study on the Rheological Behaviour of 3D Printable Mortars Incorporating Fine Recycled Concrete Aggregates (FRCA)
  59. Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing
  60. Surehali Sahil, Venkatachalam Akshay, Divigalpitiya Ranjith, Kumar Aditya et al. (2025-06)
    Ultra-Low Dosages of Novel Graphene Types Enhance the Rheological Properties and Buildability of 3D Printed Binders
  61. Sonebi Mohammed, Kaushik Sandipan, Amziane Sofiane, Hamill Gerard (2025-06)
    Optimization of Rheological and Hardened Properties of 3D Concrete Printing
  62. Zhu Xingyi, Anwar Muhammad, Deng Guomin, Wang Xiaoming et al. (2025-05)
    Effect of Microwave Heating Under Varying Exposure Conditions on Rheological Properties, Interlayer Bond and Buildability Performance of 3D-Printed Geopolymer
  63. Zhu Wenxuan, Liu Chao, Zhang Yu, Zhang Yunsheng et al. (2025-05)
    Rheological Performance Regulation and Material Optimization of Manufactured Sand Concrete in 3D Printing
  64. Kandagaddala Revanth, Boddepalli Uday, Nanthagopalan Prakash (2025-05)
    Novel Rheological Test Procedure for Printability Characterization of 3D Printable Mortar
  65. Jia Yanhong, Chen Yao, Li Yanchen, Le Huirong (2025-05)
    Impacts of the Rheological Performance on Dynamic Printing of Metakaolin-Based Geopolymer
  66. Wang Guihua, Zhou Jiguo, Liu Haoyun, Zhang Jianming (2025-05)
    Rheological Properties and Mechanical Durability of 3D-Printed Concrete Based on Low-Field NMR
  67. Das B., Prathap Y., Sandeep Ankit, Vaghamshi Keval et al. (2025-05)
    Reviewing the Materials Selection, Rheology, Durability, and Microstructural Characteristics of 3D Printed Concrete
  68. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi et al. (2025-05)
    Modelling of 3D Concrete Printing Based on SPH Method with the Herschel-Bulkley-Papanastasiou Rheology Model
  69. Tanyildizi Harun, Seloglu Maksut, Bakri Abdullah Mohd, Razak Rafiza et al. (2025-04)
    The Rheological and Mechanical Properties of 3D-Printed Geopolymers:
    A Review
  70. Wang Chaofan, Li Bin, Chen Bing (2025-04)
    Enhancing Printability and Mechanical Performance of 3D Printed Magnesium Phosphate Cement Through Silica Fume Modification:
    Rheological, Microstructural, and Numerical Insights
  71. Beigh Mirza, Signorini Cesare, Rauf Asim, Schröfl Christof et al. (2025-04)
    Intrinsic Rheological Behavior of Limestone Calcined Clay Cementitious (LC3) Binders for Automated Construction:
    Effect of Calcium Sulfate Varieties
  72. Cavalcante Tiago, Toledo Filho Romildo, Mendoza Reales Oscar (2025-04)
    Rheological and Environmental Implications of Recycled Concrete Powder as Filler in Concrete 3D Printing
  73. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2025-04)
    Novel Strategy for Enhancing Rheological Properties and Interlayer Bonding in Underwater 3D Concrete Printing
  74. Cho Eunsan, Gwon Seongwoo, Cha Soowon, Shin Myoungsu (2025-04)
    Impact of Accelerator on Rheological Properties of Cement Composites with Cellulose Microfibers:
    3D Printing Perspective
  75. Jiang Yu, Zhang Qingxin, Tabbaa Abir, Daly Ronan (2025-03)
    The Critical Role of Time-Dependent Rheology for Improved Quality Control of 3D Printed Cementitious Structures
  76. Tran Mien, Le Thanh, Cao Nguyen, Nguyen Thi (2025-03)
    Sustainable Prospect for Entire Replacement of River Sand with Recycled Glass Aggregate in 3D Printing Concrete:
    Rheological Properties, Printability, and Alkali-Silica Reaction
  77. Zat Tuani, Schuster Sílvio, Schmitt Duarte Ester, Freitas Daudt Natália et al. (2025-03)
    Rheological Properties of High-Performance Concrete Reinforced with Microfibers and Their Effects on 3D Printing Process
  78. Li Liqing, Shi Zhenkun, Wang Lei, Sui Yi et al. (2025-03)
    Experimental Study on Rheological Properties and 3D Printing of Simulated Lunar Soil Polymers
  79. Sikora Paweł, Skibicki Szymon, Chougan Mehdi, Szewczyk Piotr et al. (2025-03)
    Silica-Coated Admixtures of Bismuth and Gadolinium Oxides for 3D Printed Concrete Applications:
    Rheology, Hydration, Strength, Microstructure, and Radiation Shielding Perspective
  80. Aktürk Büşra, Ertuğrul Onur, Özen Ömer, Oktay Didem et al. (2025-03)
    Influence of Nano-Silica and R-MgO on Rheological Properties, 3D Printability, and Mechanical Properties of One-Part Sodium Carbonate-Activated Slag-Based Mixes
  81. Li Qiyan, Wen Xiaodong, Gao Xiaojian (2025-02)
    Rheological and Mechanical Properties of 3D-Printable Magnesium-Oxysulfate-Cements
  82. Li Yifan, Chen Shuisheng, Yang Liuhua, Guo Chuan et al. (2025-02)
    Investigation of the Impact of Material Rheology on the Interlayer Bonding Performance of Solid Waste 3D-Printed Components
  83. Nasr Ahmed, Duan Zhenhua, Singh Amardeep, Deng Qi et al. (2025-02)
    Fresh Properties and Rheological Behavior of 3D-Printed Cementitious Composites Incorporating Recycled PVC and Nylon Fibers:
    An Experimental Approach
  84. Yuan Yong, Fatoyinbo Imoleayo, Sheng Ruiyi, Wang Qiling et al. (2025-02)
    Advancing the Applicability of Recycled Municipal Solid Waste Incineration Bottom Ash as a Cement Substitute in Printable Concrete:
    Emphasis on Rheological and Microstructural Properties
  85. Xia Zhenjiang, Geng Jian, Zhou Zhijie, Liu Genjin (2025-01)
    Comparative Analysis of Polypropylene, Basalt, and Steel Fibers in 3D Printed Concrete:
    Effects on Flowability, Printabiliy, Rheology, and Mechanical Performance
  86. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  87. Zhao Zhihui, Cai Xianhuan, Chen Fan, Gong Yongfan et al. (2024-12)
    Effect of Wollastonite-Content on Rheology and Mechanical Properties of 3D Printed Magnesium-Potassium-Phosphate-Cement-Based Material of MgO-SiO2-K2HPO4
  88. Shilton Robert, Wang Shen, Banthia Nemkumar (2024-12)
    Use of Polysaccharides as a Rheology-Modifying-Admixture for Alkali-Activated Materials for 3D Printing
  89. Márquez Álvaro, Varela Hugo, Barluenga Gonzalo (2024-12)
    Rheology and Early-Age Evaluation of 3D Printable Cement-Limestone-Filler-Pastes with Nano-Clays and Methylcellulose
  90. Rasel Risul, Hossain Md, Zubayer Md, Zhang Chaoqun (2024-11)
    Exploring the Fresh and Rheology Properties of 3D Printed Concrete with Fiber-Reinforced Composites:
    A Novel Approach Using Machine Learning Techniques
  91. Wang Qingwei, Han Song, Yang Junhao, Li Ziang et al. (2024-11)
    Optimizing Printing and Rheological Parameters for 3D Printing with Cementitious Materials
  92. Luo Surong, Jin Wenhao, Wu Weihong, Zhang Kaijian (2024-11)
    Rheological and Mechanical Properties of Polyformaldehyde-Fiber-Reinforced 3D Printed High-Strength Concrete with the Addition of Fly-Ash
  93. Wu Mushuang, Wang Zixiao, Chen Yuxuan, Zhu Mengyu et al. (2024-11)
    Effect of Steel-Slag on Rheological and Mechanical Properties of Sulfoaluminate-Cement-Based Sustainable 3D Printing Concrete
  94. Sun Zhaoyang, Zhao Yuyang, Hou Dongshuai, Li Zongjin et al. (2024-11)
    Rheology-Control of Cement-Paste by In-Situ Polymerization for 3D Printing Applications
  95. Soave Francesco, Muciaccia Giovanni, Ferrara Liberato (2024-11)
    An Indirect Methodology to Evaluate the Rheological Properties of a Digitally Fabricated Concrete Incorporating Corrosion Inhibitors
  96. Vlieger Jentel, Cizer Özlem, Lesage Karel, Desplentere Frederik et al. (2024-11)
    Rheological- and Pumpability-Analysis of Sustainable 3D Printing Mortars Incorporating Recycled Sand
  97. Lim Sean, Tan Ming (2024-10)
    A Rheological Model for Concrete Additive Manufacturing
  98. Ding Yao, Ou Xingjian, Qi Hongtuo, Xiong Gang et al. (2024-10)
    Inter-Layer Bonding Performance of 3D Printed Engineered Cementitious Composites:
    Rheological Regulation and Fiber Hybridization
  99. Varela Hugo, Tinoco Matheus, Mendoza Reales Oscar, Toledo Filho Romildo et al. (2024-10)
    3D Printable Cement-Based Composites Reinforced with Sisal-Fibers:
    Rheology, Printability and Hardened Properties
  100. Bao Ta, Yeakleang Muy, Abdelouhab Sandra, Courard Luc (2024-10)
    Testing Mortars for 3D Printing:
    Correlation with Rheological Behavior
  101. Gyawali Biva, Haghnazar Ramtin, Akula Pavan, Alba Kamran et al. (2024-10)
    A Review on 3D Printing with Clay and Sawdust/Natural Fibers:
    Printability, Rheology, Properties, and Applications
  102. Over Derya, Ozbakan Nesil, Bustani Mehmet, Karali Bulut (2024-10)
    An Investigation of Rheological Properties and Sustainability of Various 3D Printing Concrete Mixtures with Alternative Binders and Rheological Modifiers
  103. Liu Xuelin, Sheng Haitao, Feng Binqing, Zhao Piqi et al. (2024-09)
    Effect of Potassium and Sodium-Based Electrolyzed Water on the Rheological Properties and Structural Build-Up of 3D Printed Cement Composites
  104. Reißig Silvia, Herdan Annika, Mechtcherine Viktor (2024-09)
    Rheological Behavior of Steel-Fiber-Reinforced Concrete in the Context of Additive Manufacturing
  105. Baytak Tugba, Gdeh Tawfeeq, Jiang Zhangfan, Arce Gabriel et al. (2024-09)
    Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay
  106. Muthukrishnan Shravan, Feys Dimitri, Mikhalev Daniil, Baumert Chrisitan et al. (2024-09)
    Comparison of Rotational Rheometers for Ready-Mix Concrete
  107. Kanagasuntharam Sasitharan, Ramakrishnan Sayanthan, Sanjayan Jay (2024-09)
    Active Rheology-Control of Concrete Using Encapsulated Accelerator as Responsive Additives for Concrete 3D Printing
  108. Haripan Vislavath, Senthilnathan Shanmugaraj, Gettu Ravindra, Santhanam Manu et al. (2024-09)
    Open-Time and Extrudability-Performance-Analysis of 3D Printed Concrete with Recycled Concrete Fine Aggregates Using Rheological- and Computer-Vision-Techniques
  109. Ertuğrul Onur, Özen Ömer, Oktay Didem, Yazar Tuğrul et al. (2024-09)
    Improvement of Rheological Properties and Printability of Sodium-Carbonate Activated Slag-Based Systems
  110. Ahmed Ahmed, Rosa Raul, Gomaa Shady, Irizarry Elmer et al. (2024-09)
    Rheological Characterization of Nano-Modified Ultra-High-Performance Concrete for 3D Printing
  111. Valera Hugo, Pimentel Tinoco Matheus, Mendoza Reales Oscar, Toledo Filho Romildo et al. (2024-09)
    Rheological and 3D Printing-Assessment of Sisal-Fiber Mortar for Architectural Applications
  112. Haghighat Negin, Mollah Md., Sannerud Stian, Boyer Julie et al. (2024-09)
    Rheology and Printability of Cement-Paste Modified with Filler from Manufactured Sand
  113. Bono Victor, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2024-09)
    Tailored Low-Carbon Footprint Cementitious Material for 3D Printing:
    Strategies for Rheology Adjustment and Mechanical Performance Estimation
  114. Gomzyakov Albert, Taubert Markus, Sokolov Dmitrii, Reuter Uwe et al. (2024-09)
    Setup for ML-Based Prediction of Concrete Rheology from 3D Slump-Test-Geometry
  115. Maierdan Yierfan, Armistead Samuel, Mikofsky Rebecca, Carcassi Olga et al. (2024-09)
    Exploring Locust Bean Gum as a Robust Binder and Rheology Modifier for Earth Concrete
  116. Reißig Silvia, Herdan Annika, Mechtcherine Viktor (2024-09)
    Characterisation of the Rheological Behavior of a Resource-Saving Sustainable Concrete in the Context of 3D Printing
  117. Jiang Yu, Tabbaa Abir, Daly Ronan (2024-09)
    Effects of Time-Dependent Rheological Properties of Cementitious Materials on the Print Quality of Extrusion-Based 3D Printing
  118. Oliveira Romano Roberto, Lima Francisco, Mesquita José, Pan Eduardo et al. (2024-09)
    Extended Rheological Characterization as a Tool for Low-Binder 3D Printing Compositions
  119. Rodriguez Fabian, Foster Kyle, Fross Xavier, Schmidt Roty et al. (2024-09)
    Use of a Lignin-Based Admixture for Tailoring the Rheological Properties of Mortars for 3D Printing
  120. Zhang Nan, Sanjayan Jay (2024-09)
    Rheological Modifiers in Optimizing Quick Nozzle Mixing Technology for 3D Concrete Printing
  121. Sadeghzadeh Benam Shaghayegh, Sandalci Ilgin, Bundur Zeynep, Bebek Özkan (2024-09)
    Bio-Based Additives to Improve the Rheology of High-Volume Fly-Ash Cement-Based Mortar for 3D Printing
  122. Ma Liangzhu, Yin Deshun, Ren Jiangtao, Tian Mingyuan et al. (2024-09)
    An Effective Thixotropic Structural-Dynamics Rheological-Model for 3D Printed Concrete Materials in the Flow-State
  123. Hou Shaodan, Wu Wenbo, Duan Zhenhua, Zhou Shuai et al. (2024-09)
    Rheology of Fiber-Reinforced Mortar for 3D Printing Construction:
    Effect of Recycled Hybrid-Powder and Polyethylene-Fiber
  124. Gao Jianhao, Wang Chaofeng, Li Jiaqi, Chu S. (2024-09)
    Data-Driven Rheological-Model for 3D Printable Concrete
  125. Zhao Zhihui, Liu Minghao, Kang Aihong, Cai Xianhuan et al. (2024-08)
    Rheology and Buildability of Sustainable 3D Printed Magnesium-Potassium-Phosphate-Cement Composites Incorporating MgO-SiO2-K2HPO4
  126. Robayo-Salazar Rafael, Muñoz Miguel, Vargas Armando, Gutiérrez Ruby (2024-08)
    Effects of Incorporating Bentonite, Metakaolin, Microsilica, and Calcium-Carbonate on the Rheological Properties of Portland-Cement-Based 3D Printing Inks
  127. Prathipati S., Vardhan J., Murali D., Nithin C. et al. (2024-08)
    An Experimental Study on the Effect of a Viscosity-Modifying-Agent on the Rheological and Strength Behavior of 3D Printed Concrete
  128. Şahin Hatice, Akgümüş Fatih, Mardani Ali (2024-08)
    Mechanical and Rheological Properties of Fiber‐Reinforced 3D Printable Concrete in Terms of Fiber Content and Aspect Ratio
  129. Kamakshi Tippabhotla, Thakur Manideep, Subramaniam Kolluru (2024-07)
    Formulating Printable Concrete Mixtures Based on Paste-Rheology and Aggregate-Content:
    Application to Alkali-Activated Binders
  130. Zhang Yi, Tittelboom Kim, Schutter Geert, Jiang Zhengwu (2024-07)
    Active Rheology-Control for 3D Printable Cement-Based Materials by Temperature:
    An Exploratory Study
  131. Barve Prasad, Bahrami Alireza, Shah Santosh (2024-07)
    A Comprehensive Review on Effects of Material-Composition, Mix-Design, and Mixing-Regimes on Rheology of 3D Printed Geopolymer Concrete
  132. Sariyev Bakytzhan, Konysbekov Alisher, Jexembayeva Assel, Konkanov Marat (2024-07)
    A Comparative Study of the Rheological Properties of a Fly-Ash-Based Geopolymer Reinforced with PP-Fiber for 3D Printing:
    An Experimental and Numerical Approach
  133. Gu Yucun, Khayat Kamal (2024-06)
    Effect of Superabsorbent Polymer on 3D Printing Characteristics as Rheology-Modified-Agent
  134. Masoud Laith, Hammoud Ahmad, Mortada Youssef, Masad Eyad (2024-06)
    Rheological, Mechanical, and Microscopic Properties of Polypropylene-Fiber-Reinforced Geopolymer Concrete for Additive Manufacturing
  135. Kilic Ugur, Soliman Nancy, Omran Ahmed, Ozbulut Osman (2024-06)
    Effects of Cellulose Nanofibrils on Rheological and Mechanical Properties of 3D Printable Cement Composites
  136. Maierdan Yierfan, Zhao Diandian, Choksi Pooja, Garmonina Maria et al. (2024-05)
    Rheology, 3D Printing, and Particle-Interactions of Xanthan-Gum-Clay Binder for Earth Concrete
  137. Taqa Ala, Mohsen Mohamed, Aburumman Mervat, Naji Khalid et al. (2024-05)
    Nano-Fly-Ash and Clay for 3D Printing Concrete Buildings:
    A Fundamental Study of Rheological, Mechanical and Microstructural Properties
  138. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites
  139. Kamakshi Tippabhotla, Subramaniam Kolluru (2024-05)
    Rheology-Control and 3D Concrete Printing with Fly Ash-Based Aqueous Nano-Silica Enhanced Alkali-Activated Binders
  140. Gao Huaxing, Jin Lang, Chen Yuxuan, Chen Qian et al. (2024-05)
    Rheological Behavior of 3D Printed Concrete:
    Influential Factors and Printability Prediction Scheme
  141. Boddepalli Uday, Gandhi Indu, Panda Biranchi (2024-05)
    Synergistic Effect of Fly-Ash and Polyvinyl-Alcohol-Fibers in Improving Stability, Rheology, and Mechanical Properties of 3D Printable Foam-Concrete
  142. Cavalcante Tiago, Toledo Filho Romildo, Mendoza Reales Oscar (2024-05)
    Influence of Recycled Concrete-Powder on Rheology of Printable Cement-Based Matrixes
  143. Chen Yuxuan, Zhang Longfei, Wei Kai, Gao Huaxing et al. (2024-04)
    Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide
  144. Yang Liuhua, Gao Yang, Chen Hui, Jiao Huazhe et al. (2024-04)
    3D Printing Concrete Technology from a Rheology Perspective:
    A Review
  145. Peng Yiming, Unluer Cise (2024-04)
    Understanding the Rheological Behavior of Reactive Magnesia-Metakaolin System in the Context of Digital Construction
  146. Zhang Yiyuan, Tao Yaxin, Zhang Yi, Tittelboom Kim et al. (2024-04)
    Up-Scaling Active Rheology-Control to Cement-Mortar with the Intervention of an In-Line Magnetic Field
  147. Vallurupalli Kavya, Libre Nicolas, Khayat Kamal (2024-04)
    Characterization of Extrudability Using Rheology and Desorptivity
  148. Geng Songyuan, Mei Liu, Cheng Boyuan, Luo Qilong et al. (2024-03)
    Revolutionizing 3D Concrete Printing:
    Leveraging Random-Forest-Model for Precise Printability and Rheological Prediction
  149. Zhu Lingli, Zhao Wanting, Zhao Yu, Guan Xuemao (2024-03)
    Mechanism Analysis of Rheological Properties of 3D Printed Steel-Slag Cementitious Composite Based on Low-Field Nuclear-Magnetic-Relaxation-Test
  150. Zhang Yi, Ren Qiang, Dai Xiaodi, Tao Yaxin et al. (2024-03)
    A Potential Active Rheology-Control Approach for 3D Printable Cement-Based Materials:
    Coupling of Temperature and Viscosity-Modifiers
  151. Jia Lutao, Jia Zijian, Zhang Zedi, Tang Zhenzhong et al. (2024-02)
    Effect of Recycled Brick-Powder with Various Particle-Features on Early-Age Hydration, Water-State, and Rheological Properties of Blended Cement-Paste in the Context of 3D Printing
  152. Perales-Santillan M., Díaz-Aguilera Jorge, Mendoza-Rangel Jose (2024-02)
    Evaluation of the Rheological Behavior for Alkaline-Activated Cements of Metakaolin and Limestone for Its Potential Application in 3D Printing
  153. Ahi Oğulcan, Ertunç Özgür, Bundur Zeynep, Bebek Özkan (2024-02)
    Automated Flow-Rate-Control of Extrusion for 3D Concrete Printing Incorporating Rheological Parameters
  154. Pi Yilin, Lu Cong, Yao Yiming, Li Baoshan (2024-01)
    A Rheological-Based Printability-Assessment Method for 3D Printing Engineered Cementitious Composites Considering Fiber-Dispersion
  155. Christ Julian, Perrot Arnaud, Ottosen Lisbeth, Koss Holger (2023-12)
    Rheological Characterization of Temperature-Sensitive Biopolymer-Bound 3D Printing Concrete
  156. Reißig Silvia, Bedolla Carolin, Meyer Tamara, Mechtcherine Viktor (2023-12)
    Rheological Behavior of Fiber-Reinforced LC3 Fine-Grained Concrete in the Context of Additive Manufacturing
  157. Carvalho Ivo, Melo Abcael, Melo Carlos, Brito Mateus et al. (2023-12)
    Evaluation of the Effect of Rubber-Waste-Particles on the Rheological and Mechanical Properties of Cementitious Materials for 3D Printing
  158. Zhi Peng, Wu Yuching, Rabczuk Timon (2023-11)
    Effects of Time-Varying Liquid Bridge Forces on Rheological Properties, and Resulting Extrudability and Constructability of Three-Dimensional Printing Mortar
  159. Maierdan Yierfan, Armistead Samuel, Mikofsky Rebecca, Huang Qiqi et al. (2023-11)
    Rheology and 3D Printing of Alginate Bio-Stabilized Earth Concrete
  160. Bhusal Shiva, Sedghi Reza, Hojati Maryam (2023-11)
    Evaluating the Printability and Rheological and Mechanical Properties of 3D Printed Earthen Mixes for Carbon-Neutral Buildings
  161. Gao Huaxing, Chen Yuxuan, Chen Qian, Yu Qingliang (2023-11)
    Thermal and Mechanical Performance of 3D Printing Functionally Graded Concrete:
    The Role of SAC on the Rheology and Phase Evolution of 3DPC
  162. Zou Mengtong, Liu Chuanbei, Zhang Keying, Li Wuqian et al. (2023-11)
    Evaluation and Control of Printability and Rheological Properties of 3D Printed Rubberized Concrete
  163. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-10)
    Comparative Studies of LC³- and Fly-Ash-Based Blended Binders in Fiber-Reinforced Printed Concrete:
    Rheological and Quasi-Static Mechanical Characteristics
  164. Miranda Luiza, Jovanović Balša, Lesage Karel, Schutter Geert (2023-10)
    Geometric Conformability of 3D Concrete Printing Mixtures from a Rheological Perspective
  165. Tao Yaxin, Mohan Manu, Rahul Attupurathu, Schutter Geert et al. (2023-10)
    Influence of Rheology on Mixing Homogeneity and Mechanical Behavior of Twin-Pipe 3D Printable Concrete
  166. Şahin Hatice, Mardani Ali (2023-10)
    How Does Rheological Behavior Affect the Inter-Layer Bonding Strength of 3DPC Mixtures?
  167. Bayat Hamid, Kashani Alireza (2023-09)
    Analysis of Rheological Properties and Printability of a 3D Printing Mortar Containing Silica-Fume, Hydrated Lime, and Blast-Furnace-Slag
  168. Yin Yunchao, Huang Jian, Wang Tiezhu, Yang Rong et al. (2023-09)
    Effect of Hydroxypropyl-Methylcellulose on Rheology and Printability of the First Printed Layer of Cement Activated Slag-Based 3D Printing Concrete
  169. Yue Hongfei, Zhang Zhuxian, Hua Sudong, Gao Yanan et al. (2023-09)
    Solid Waste-Based Set-on-Demand 3D Printed Concrete:
    Active Rheological-Control of Cement-Based Magneto-Rheological Fluids
  170. Li Mingyang, Liu Zhixin, Ho Jin, Wong Teck (2023-08)
    Experimental Investigation of Fresh and Time-Dependent Rheological Properties of 3D Printed Cementitious Material
  171. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  172. Pedrosa Ana, Gaspar Florindo (2023-08)
    Rheology-Assessment of Mortar-Materials for Additive Manufacturing
  173. Chen Mingxu, Jin Yuan, Sun Keke, Wang Shoude et al. (2023-08)
    Study on the Durability of 3D Printed Calcium-Sulphoaluminate Cement-Based Materials Related to Rheology-Control
  174. Wang Qing, Ren Xiaodan, Li Jie (2023-08)
    Damage-Rheology Model for Predicting 3D Printed Concrete Buildability
  175. Varela Hugo, Barluenga Gonzalo, Sonebi Mohammed (2023-07)
    Rheology Characterization of 3D Printing Mortars with Nano-Clays and Basalt-Fibers
  176. Zhang Nan, Sanjayan Jay (2023-07)
    Mechanisms of Rheological Modifiers for Quick Mixing Method in 3D Concrete Printing
  177. Jacquet Yohan, Perrot Arnaud (2023-07)
    Sewing Concrete Device:
    Combining In-Line Rheology-Control and Reinforcement-System for 3D Concrete Printing
  178. Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
    Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
    A Review
  179. Schönsee Eric, Hüsken Götz, Jeyifous Olubunmi, Mezhov Alexander et al. (2023-06)
    Calculating Rheological Properties of Fresh Mortar for Additive Manufacturing Based on Experimental, Multi-Sensor Data
  180. Tinoco Matheus, Mendoza Reales Oscar, Toledo Filho Romildo (2023-06)
    Rheological Behavior of 3D Printable Bio-Concretes Produced with Rice Husk
  181. Joshi Arpan, Poullain Philippe, Craveiro Flávio, Bártolo Helena (2023-06)
    Earth as a Construction-Material for Sustainable 3D Printing:
    Rheological Aspect
  182. Xu Zhuoyue, Zhang Dawang, Li Hui, Yin Le et al. (2023-06)
    Effects of Additives on the Mechanical Properties, Rheology, and Printing Properties of PCC-Based 3DPMs
  183. Oh Sangwoo, Hong Geuntae, Choi Seongcheol (2023-05)
    Determining the Effect of Superabsorbent Polymers, Macrofibers, and Resting Time on the Rheological Properties of Cement Mortar Using Analysis of Variance:
    A 3D Printing Perspective
  184. Sasikumar Athira, Balasubramanian Dhayalini, Senthil Kumaran M., Govindaraj Vishnuvarthanan (2023-05)
    Effect of Coarse Aggregate Content on the Rheological and Buildability Properties of 3D Printable Concrete
  185. Oh Sangwoo, Choi Seongcheol (2023-05)
    Effects of Superabsorbent Polymers (SAP) On the Rheological Behavior of Cement Mortars:
    A Rheological Study on Performance Requirements for 3D Printable Cementitious Materials
  186. Gao Yanan, Hua Sudong, Yue Hongfei (2023-04)
    Study on Preparation and Rheological Properties of 3D Printed Pre-Foaming Concrete
  187. Yu Qian, Zhu Binrong, Li Xuesen, Meng Lingqi et al. (2023-04)
    Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag
  188. Şahin Hatice, Temel Müge, Mardani Ali (2023-04)
    Determination of Optimum VMA Utilization Dosage in Cementitious Systems:
    In Terms of Rheological and Flowability Properties
  189. Salam Mohammad Abdul, Biernacki Joseph (2023-04)
    2D Stationary Computational Printing of Cement-Based Pastes with Time-Dependent Rheology
  190. Ibrahim Kamoru, Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2023-03)
    Influence of Effective Micro-Organisms on the Rheology and Fresh State Properties of SCMs-Based Concrete for Digital Fabrication
  191. Cui Weijiu, Wang Tianheng, Chen Xu, Shen Wenkai et al. (2023-03)
    Study of 3D Printed Concrete with Low-Carbon Cementitious Materials Based on Its Rheological Properties and Mechanical Performances
  192. Uddin Md, Mahamoudou Faharidine, Deng Boyu, Elobaid Musa Moneef et al. (2023-03)
    Prediction of Rheological Parameters of 3D Printed Polypropylene-Fiber-Reinforced Concrete by Machine Learning
  193. Ravichandran Darssni, Giridhar Greeshma, Ramamurthy Vignesh, Prem Prabhat (2023-03)
    Influence of Test-Protocol on Determining the Rheological Properties of Cement-Pastes-Mixtures for Concrete 3D Printing
  194. Giridhar Greeshma, Prem Prabhat, Jiao Dengwu (2023-03)
    Effect of Varying Shear Rates at Different Resting Times on the Rheology of 3D Printable Concrete
  195. Dai Xiaodi, Tao Yaxin, Tittelboom Kim, Schutter Geert (2023-02)
    Rheological and Mechanical Properties of 3D Printable Alkali-Activated Slag Mixtures with Addition of Nano Clay
  196. Chen Yu, Liang Minfei, Zhang Yu, Li Zhenming et al. (2023-02)
    Can Superabsorbent Polymers Be Used as Rheology-Modifiers for Cementitious Materials in the Context of 3D Concrete Printing
  197. Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei (2023-02)
    Effects of the Distribution of Solid Particles on the Rheological Properties and Buildability of 3DPM Fresh Pastes with Different FA/GGBFS Content
  198. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Das Utpal et al. (2023-02)
    Optimization of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material-Strength Using Factorial Design of Experiment
  199. Ishida Takato, Nakada Kiyofumi (2023-02)
    Review of Rheology in Cement-Based Materials and Its Application to 3D Printing Using Concrete
  200. Xiao Jianzhuang, Hou Shaodan, Duan Zhenhua, Zou Shuai (2023-01)
    Rheology of 3D Printable Concrete Prepared by Secondary Mixing of Ready-Mix Concrete
  201. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites
  202. Tinoco Matheus, Gouvêa Lucas, Cássia Magalhães Martins Karenn, Toledo Filho Romildo et al. (2022-12)
    The Use of Rice Husk Particles to Adjust the Rheological Properties of 3D Printable Cementitious Composites Through Water Sorption
  203. İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Ozcelikci Emircan et al. (2022-12)
    Rheological Property and Extrudability Performance-Assessment of Construction and Demolition Waste-Based Geopolymer Mortars with Varied Testing Protocols
  204. Miranda Luiza, Marchesini Flávio, Lesage Karel, Schutter Geert (2022-12)
    The Evolution of the Rheological Behavior of Hydrating Cement Systems:
    Combining Constitutive Modeling with Rheometry, Calorimetry and Mechanical Analyses
  205. Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
    Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing
  206. Kondepudi Kala, Subramaniam Kolluru, Nematollahi Behzad, Bong Shin et al. (2022-11)
    Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing:
    Correction
  207. Zhao Yu, Yang Guang, Zhu Lingli, Ding Yahong et al. (2022-10)
    Effects of Rheological Properties and Printing Speed on Molding Accuracy of 3D Printing Basalt-Fiber Cementitious Materials
  208. Das Arnesh, Reiter Lex, Mantellato Sara, Flatt Robert (2022-10)
    Early-Age Rheology and Hydration-Control of Ternary Binders for 3D Printing Applications
  209. Liu Chao, Chen Yuning, Zhang Zedi, Niu Geng et al. (2022-10)
    Study of the Influence of Sand on Rheological Properties, Bubble Features and Buildability of Fresh Foamed Concrete for 3D Printing
  210. Kalthoff Matthias, Raupach Michael, Matschei Thomas (2022-09)
    Investigation of Rheological Test-Methods for the Suitability of Mortars for Manufacturing of Textile-Reinforced Concrete Using a Laboratory Mortar-Extruder:
    LabMorTex
  211. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  212. Wu Yun-Chen, Li Mo (2022-09)
    Effects of Early-Age Rheology and Printing Time Interval on Late-Age Fracture Characteristics of 3D Printed Concrete
  213. Marcucci Andrea, Ferrara Liberato (2022-09)
    Artificial Neural Networks and Fuzzy Logic Applied to Concrete Rheology for the Study of Printability
  214. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2022-09)
    Rheological and Strength-Characterisation of Limestone-Calcined-Clay-Cement 3D Printed Concrete
  215. Aydin Eylül, Kara Burhan, Bundur Zeynep, Özyurt Nilüfer et al. (2022-08)
    A Comparative Evaluation of Sepiolite and Nano-Montmorillonite on the Rheology of Cementitious Materials for 3D Printing
  216. Wang Zhibin, Jia Lutao, Deng Zhicong, Zhang Chao et al. (2022-08)
    Bond Behavior Between Steel-Bars and 3D Printed Concrete:
    Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating
  217. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
    Rheometry for Concrete 3D Printing:
    A Review and an Experimental Comparison
  218. Reißig Silvia, Nerella Venkatesh, Mechtcherine Viktor (2022-06)
    Material-Design and Rheological Behavior of Sustainable Cement-Based Materials in the Context of 3D Printing
  219. Kamakshi Tippabhotla, Subramaniam Kolluru (2022-06)
    Developing Printable Fly-Ash-Slag Geopolymer Binders with Rheology Modification
  220. Jin Yuan, Xu Jiabin, Li Yali, Zhao Zhihui et al. (2022-06)
    Rheological Properties, Shape Stability and Compressive Strength of 3D Printed Colored Cement Composites Modified by Needle-Like Pigment
  221. Kondepudi Kala, Subramaniam Kolluru, Nematollahi Behzad, Bong Shin et al. (2022-05)
    Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing
  222. Zhao Zhihui, Chen Mingxu, Jin Yuan, Lu Lingchao et al. (2022-05)
    Rheology-Control Towards 3D Printed Magnesium-Potassium-Phosphate-Cement Composites
  223. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Kamile, Felekoğlu Burak (2022-05)
    Effect of Fiber-Reinforcement on Extrudability and Buildability of Mineral-Additive-Modified Portland-Cement Mortars:
    A Rheometer-Based Simulation-Analysis
  224. Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei et al. (2022-05)
    Effect of FA and GGBFS on Compressive Strength, Rheology, and Printing Properties of Cement-Based 3D Printing Material
  225. Moini Mohamadreza, Olek Jan, Zavattieri Pablo, Youngblood Jeffrey (2022-04)
    Early-Age Buildability-Rheological Properties Relationship in Additively Manufactured Cement-Paste Hollow Cylinders
  226. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  227. Prem Prabhat, Ravichandran Darssni, Kaliyavaradhan Senthil, Ambily Parukutty (2022-04)
    Comparative Evaluation of Rheological Models for 3D Printable Concrete
  228. Uhlík Adam, Buch Mário, Unčík Stanislav (2022-04)
    Effecting the Rheological Properties of Composites for 3D Printing Technology in Construction
  229. Chen Mingxu, Li Haisheng, Yang Lei, Wang Shoude et al. (2022-03)
    Rheology and Shape-Stability-Control of 3D Printed Calcium-Sulphoaluminate-Cement Composites Containing Paper-Milling-Sludge
  230. Zhi Peng, Wu Yuching, Yang Qianfan, Kong Xiangrui et al. (2022-03)
    Effect of Spiral Blade Geometry on 3D Printed Concrete Rheological Properties and Extrudability Using Discrete Event Modeling
  231. İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Yıldırım Gürkan et al. (2022-03)
    Rheological Properties and Compressive Strength of Construction and Demolition Waste-Based Geopolymer Mortars for 3D Printing
  232. Harbouz Ilhame, Rozière Emmanuel, Yahia Ammar, Loukili Ahmed (2022-02)
    Printability-Assessment of Cement-Based Materials Based on Rheology, Hydration Kinetics, and Viscoelastic Properties
  233. Chen Yuning, Liu Chao, Cao Ruilin, Chen Chun et al. (2022-02)
    Systematical Investigation of Rheological Performance Regarding 3D Printing Process for Alkali-Activated Materials:
    Effect of Precursor Nature
  234. Eugenin Claudia, Navarrete Iván, Brevis Wernher, Lopez Mauricio (2022-02)
    Air-Bubbles as an Admixture for Printable Concrete:
    A Review of the Rheological Effect of Entrained Air
  235. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud et al. (2022-02)
    Influence of Nano-Clay on the Fresh and Rheological Behavior of 3D Printing Mortar
  236. Cui Jinyang, He Zhen, Zhang Guozhi, Cai Xinhua (2022-01)
    Rheological Properties of Sprayable Ultra-High-Performance Concrete with Different Viscosity-Enhancing Agents
  237. Jones Scott, Hipp Julie, Allen Andrew, Gagnon Cedric (2021-12)
    Rheology and Microstructure Development of Hydrating-Tricalcium-Silicate:
    Implications for Additive Manufacturing in Construction
  238. Xiao Qiyuan, Long Guangcheng, Feng Ruiping, Zeng Xiaohui et al. (2021-12)
    Effect of Alternating Current Field on Rheology of Fresh Cement-Based-Pastes
  239. Kilic Ugur, Yang Yang, Ma Ji, Ozbulut Osman (2021-12)
    Rheological and Thermal Characterization of 3D Printable Lightweight Cementitious Composites with Fly-Ash-Cenospheres
  240. Yao Hao, Xie Zonglin, Li Zemin, Huang Chuhan et al. (2021-11)
    The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite
  241. Jiao Dengwu, Shi Caijun, Schutter Geert (2021-11)
    Magneto-Rheology-Control in 3D Concrete Printing:
    A Rheological Attempt
  242. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
    Role of Chemical Admixtures on 3D Printed Portland Cement:
    Assessing Rheology and Buildability
  243. Paiva Maria, Duarte Fonseca Rocha Larissa, Fernandez Letízia, Toledo Filho Romildo et al. (2021-11)
    Rheological Properties of Metakaolin-Based Geopolymers for Three-Dimensional Printing of Structures
  244. Murcia Heras, Abdellatef Mohammed, Genedy Moneeb, Taha Mahmoud (2021-11)
    Rheological Characterization of Three-Dimensional-Printed Polymer Concrete
  245. Deshmukh Aparna, Heintzkill Reed, Huerta Rosalba, Sobolev Konstantin (2021-11)
    Rheological Response of Magnetorheological Cementitious Inks Tuned for Active Control in Digital Construction
  246. Douba AlaEddin, Kawashima Shiho (2021-11)
    Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing
  247. Liu Yu, Jing Rui, Cao Fengze, Yan Peiyu (2021-11)
    Effects of Aggregate Content on Rheological Properties of Lubrication-Layer and Pumping Concrete
  248. Ko Lesley, Moro Sandro, Bury Jeff, Vickers Tom et al. (2021-11)
    Rheology and Setting Control of Concrete for Digital Construction
  249. Nair Sooraj, Neithalath Narayanan (2021-11)
    Flow Characterization of Three-Dimensional Printable Cementitious Pastes During Extrusion Using Capillary-Rheometry
  250. Sonebi Mohammed, Dedenis Marie, Abdalqader Ahmed, Perrot Arnaud (2021-11)
    Effect of Red Mud, Nano-Clay, and Natural Fiber on Fresh and Rheological Properties of Three-Dimensional Concrete Printing
  251. Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
    On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing
  252. Lee Hojae, Seo Eun-A, Kim Won-Woo, Moon Jae-Heum (2021-10)
    Experimental Study on Time-Dependent Changes in Rheological Properties and Flow-Rate of 3D Concrete Printing Materials
  253. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  254. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  255. Poudelet Louison, Castellví A., Calvo Laura, Cardona Roger et al. (2021-10)
    Presentation of a Concrete Additive Manufacturing Extruder with On-Line Rheology Modification Capabilities
  256. Xu Yanqun, Yuan Qiang, Li Zemin, Shi Caijun et al. (2021-09)
    Correlation of Inter-Layer Properties and Rheological Behaviors of 3DPC with Various Printing Time Intervals
  257. Schryver Robin, Cheikh Khadija, Lesage Karel, Yardimci Mert et al. (2021-09)
    Numerical Reliability Study Based on Rheological Input for Bingham-Paste-Pumping Using a Finite Volume Approach in OpenFOAM
  258. Lv Xuesen, Qin Yao, Liang Hang, Cui Xuemin (2021-07)
    Effects of Modifying-Agent on Rheology and Workability of Alkali-Activated Slag-Paste for 3D Extrusion-Forming
  259. Zhao Zhihui, Chen Mingxu, Zhong Xu, Huang Yongbo et al. (2021-07)
    Effects of Bentonite, Diatomite and Metakaolin on the Rheological Behavior of 3D Printed Magnesium-Potassium-Phosphate-Cement Composites
  260. Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
    Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates
  261. Shen Wenkai, Yuan Qiang, Shi Caijun, Ji Youhong et al. (2021-07)
    Influence of Pumping on the Resistivity Evolution of High-Strength Concrete and Its Relation to the Rheology
  262. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  263. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  264. Song Hongwei, Li Xinle (2021-05)
    An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites
  265. Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
    3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
    Rheological, Thermal and Mechanical Properties
  266. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2021-05)
    Extrusion Rheometer for 3D Concrete Printing
  267. Tarhan Yeşim, Şahin Remzi (2021-05)
    Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars
  268. Cho Seung, Kruger Jacques, Rooyen Algurnon, Zijl Gideon (2021-03)
    Rheology and Application of Buoyant Foam-Concrete for Digital Fabrication
  269. Zhao Zhihui, Chen Mingxu, Xu Jiabin, Li Laibo et al. (2021-03)
    Mix-Design and Rheological Properties of Magnesium-Potassium-Phosphate Cement Composites Based on the 3D Printing-Extrusion-System
  270. Chougan Mehdi, Ghaffar Seyed, Sikora Paweł, Chung Sang-Yeop et al. (2021-02)
    Investigation of Additive Incorporation on Rheological, Microstructural and Mechanical Properties of 3D Printable Alkali-Activated Materials
  271. Rubin Ariane, Hasse Jéssica, Repette Wellington (2021-01)
    The Evaluation of Rheological Parameters of 3D Printable Concretes and the Effect of Accelerating-Admixture
  272. Demont Léo, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2021-01)
    Flow-Based Pultrusion of Continuous Fibers for Cement-Based Composite Material and Additive Manufacturing:
    Rheological and Technological Requirements
  273. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-01)
    Early-Age Hydration, Rheology and Pumping Characteristics of CSA Cement-Based 3D Printable Concrete
  274. Chen Mingxu, Yang Lei, Zheng Yan, Li Laibo et al. (2021-01)
    Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites
  275. Jacquet Yohan, Picandet Vincent, Rangeard Damien, Perrot Arnaud (2020-12)
    Gravity-Induced Flow to Characterize Rheological Properties of Printable Cement-Based Materials
  276. Jacquet Yohan, Perrot Arnaud, Picandet Vincent (2020-11)
    Assessment of Asymmetrical Rheological Behavior of Cementitious Material for 3D Printing Application
  277. Sanjayan Jay, Jayathilakage Roshan, Rajeev Pathmanathan (2020-11)
    Vibration-Induced Active Rheology-Control for 3D Concrete Printing
  278. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  279. Guo Xiaolu, Yang Junyi, Xiong Guiyan (2020-09)
    Influence of Supplementary Cementitious Materials on Rheological Properties of 3D Printed Fly-Ash-Based Geopolymer
  280. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
    3D Printed Concrete for Large-Scale Buildings:
    An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects
  281. Falliano Devid, Crupi Giuseppe, Domenico Dario, Ricciardi Giuseppe et al. (2020-07)
    Investigation on the Rheological Behavior of Lightweight Foamed Concrete for 3D Printing Applications
  282. Douba AlaEddin, Chan Clare, Berrios Stephanie, Kawashima Shiho (2020-07)
    Synthesis of Hybridized Rheological Modifiers for 3D Concrete Printing
  283. Pattaje Sooryanarayana Karthik, Stynoski Peter, Lange David (2020-07)
    Effect of Vibration on the Rheology of Concrete for 3D Printing
  284. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-07)
    Use of the Chemical and Mineral Admixtures to Tailor the Rheology and the Green Strength of 3D Printing Cementitious Mixtures
  285. Varela Hugo, Barluenga Gonzalo, Palomar Irene (2020-07)
    Rheology Evaluation of Cement-Paste with Nano-Clay , Nano-Silica and Polymeric Admixtures for Digital Fabrication
  286. Dedenis Marie, Sonebi Mohammed, Amziane Sofiane, Perrot Arnaud et al. (2020-07)
    Effect of Metakaolin, Fly-Ash and Polypropylene-Fibers on Fresh and Rheological Properties of 3D Printing Based Cement Materials
  287. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
    Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing
  288. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2020-04)
    A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete
  289. Pott Ursula, Jakob Cordula, Jansen Daniel, Neubauer Jürgen et al. (2020-02)
    Investigation of the Incompatibilities of Cement and Superplasticizers and Their Influence on the Rheological Behavior
  290. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  291. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-12)
    Comparison of Rheology Measurement Techniques Used in 3D Concrete Printing Applications
  292. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  293. Panda Biranchi, Mohamed Nisar, Tan Ming (2019-09)
    Rheology and Structural Rebuilding of One-Part Geopolymer Mortar in the Context of 3D Concrete Printing
  294. Matthäus Carla, Weger Daniel, Kränkel Thomas, Carvalho Luis et al. (2019-09)
    Extrusion of Lightweight Concrete:
    Rheological Investigations
  295. Shah Surendra, Kim Jae (2019-09)
    Rheology of Fresh Concrete:
    Historical Perspective and Glance in the Future
  296. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-09)
    Quantifying Constructability Performance of 3D Concrete Printing via Rheology-Based Analytical Models
  297. Cho Seung, Kruger Jacques, Rooyen Algurnon, Zeranka Stephan et al. (2019-09)
    Rheology of 3D Printable Lightweight Foam-Concrete Incorporating Nano-Silica
  298. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  299. Peng Yiming, Ma Kunlin, Long Guangcheng, Xie Youjun (2019-08)
    Influence of Nano-SiO2, Nano-CaCO3 and Nano-Al2O3 on Rheological Properties of Cement-Fly-Ash-Paste
  300. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  301. Silva Wilson, Fryda Hervé, Bousseau Jean-Noël, Andreani Pierre-Antoine et al. (2019-07)
    Evaluation of Early-Age Concrete Structural Build-Up for 3D Concrete Printing by Oscillatory Rheometry
  302. Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
    Utilization of Recycled Glass for 3D Concrete Printing:
    Rheological and Mechanical Properties
  303. Jeong Hoseong, Han Sun-Jin, Choi Seung-Ho, Lee Yoon et al. (2019-02)
    Rheological Property Criteria for Buildable 3D Printing Concrete
  304. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  305. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-01)
    Direct-Shear-Test for the Assessment of Rheological Parameters of Concrete for 3D Printing Applications
  306. Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman et al. (2019-01)
    Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing
  307. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  308. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  309. Panda Biranchi, Tan Ming (2018-11)
    Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application
  310. Chen Mingxu, Guo Xiangyang, Zheng Yan, Li Laibo et al. (2018-11)
    Effect of Tartaric Acid on the Printable, Rheological and Mechanical Properties of 3D Printing Sulphoaluminate Cement-Paste
  311. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  312. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  313. Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
    Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials
  314. Jones Scott, Bentz Dale, Martys Nicos, George William et al. (2018-09)
    Rheological Control of 3D Printable Cement-Paste and Mortars
  315. Esnault Vivien, Labyad A., Chantin Marjorie, Toussaint Fabrice (2018-09)
    Experience in On-Line Modification of Rheology and Strength Acquisition of 3D Printable Mortars
  316. Ma Siwei, Kawashima Shiho (2018-09)
    Rheological and Water Transport Properties of Cement-Pastes Modified with Diutan Gum and Attapulgite-Palygorskite-Nano-Clay for 3D Concrete Printing
  317. Yang Pu, Nair Sooraj, Neithalath Narayanan (2018-09)
    Discrete Element Simulations of Rheological Response of Cementitious Binders as Applied to 3D Printing
  318. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  319. Liu Zhixin, Li Mingyang, Wong Teck, Tan Ming (2018-05)
    Measurement of the Fresh Rheological Properties of Material in 3D Printing
  320. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  321. Ketel Sabrina, Falzone Gabriel, Wang Bu, Washburn Newell et al. (2018-04)
    A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D Printed Components
  322. Nerella Venkatesh, Mechtcherine Viktor (2018-03)
    Virtual Sliding-Pipe Rheometer for Estimating Pumpability of Concrete
  323. Villacis N., Gualavisi M., Narváez-Muñoz Christian, Carrión L. et al. (2017-11)
    Additive Manufacturing of a Rheological Characterized Cement-Based Composite Material
  324. Secrieru Egor, Fataei Shirin, Schröfl Christof, Mechtcherine Viktor (2017-04)
    Study on Concrete Pumpability Combining Different Laboratory Tools and Linkage to Rheology
  325. Beigh Mirza, Nerella Venkatesh, Schröfl Christof, Mechtcherine Viktor (2015-06)
    Studying the Rheological Behavior of Limestone-Calcined-Clay-Cement (LC3) Mixtures in the Context of Extrusion-Based 3D Printing
  326. Bessaies-Bey Hela, Baumann Robert, Schmitz Marc, Radler Michael et al. (2015-05)
    Effect of Polyacrylamide on Rheology of Fresh Cement-Pastes
  327. Mechtcherine Viktor, Nerella Venkatesh, Kasten Knut (2013-12)
    Testing Pumpability of Concrete Using Sliding-Pipe Rheometer
  328. Zhou Xiangming, Li Zongjin, Fan Mizi, Chen Huapeng (2013-01)
    Rheology of Semi-Solid Fresh Cement-Pastes and Mortars in Orifice-Extrusion
  329. Deng Shou-chang, Zhang Xue-bing, Qin Ying-hui, Luo Guan-xiang (2007-02)
    Rheological Characteristic of Cement Clean Paste and Flowing Behavior of Fresh Mixing Concrete with Pumping in Pipeline