Skip to content

Concrete 3D Printing Technology in Sustainable Construction (2024-02)

A Review on Raw Materials, Concrete Types and Performances

10.1016/j.dibe.2024.100378

Wang Xiaonan,  Li Wengui, Guo Yipu,  Kashani Alireza,  Wang Kejin,  Ferrara Liberato, Agudelo Isabel
Journal Article - Developments in the Built Environment, Vol. 17, No. 100378

Abstract

This paper reviews recent developments and proposes perspectives for future research on three-dimensional printing concrete (3DPC). This review originally analyses the 3DP applications combined with concrete types that are classified into three groups: functional concrete, sustainable concrete, and special concrete. The 3DP technique shows different effects on concrete types due to various modification methods (e.g., nano-additive, fibre addition, and chemical reagent) and challenging requirements (e.g., anisotropy exploit and defect). Summarily, the oriented fibre of 3DPC is a double-edged sword, asking for optimal structural design for engineered cementitious composite (ECC), ultra-high-performance concrete (UHPC), and most fibre-improved concrete. The 3DP technique is not propitious to all concrete types, such as foam concrete, because the additional pressure in the printing process poses a huge disadvantage to foam stability. This paper also proposes the 3DPC protentional from the view of concrete features, which represents a contribution to advanced concrete technology and 3DPC development direction.

175 References

  1. Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
    Potential Benefits of Digital Fabrication for Complex Structures:
    Environmental Assessment of a Robotically Fabricated Concrete Wall
  2. Alghamdi Hussam, Neithalath Narayanan (2019-07)
    Synthesis and Characterization of 3D Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials
  3. Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
    Environmental Assessment of Large-Scale 3D Printing in Construction:
    A Comparative Study between Cob and Concrete
  4. Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
    Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing
  5. Alyami Mana, Khan Majid, Javed Muhammad, Ali Mujahid et al. (2023-12)
    Application of Metaheuristic Optimization Algorithms in Predicting the Compressive Strength of 3D Printed Fiber-Reinforced Concrete
  6. Anton Ana-Maria, Reiter Lex, Wangler Timothy, Frangez Valens et al. (2020-12)
    A 3D Concrete Printing Prefabrication Platform for Bespoke Columns
  7. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  8. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  9. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Khayat Kamal et al. (2021-10)
    Digital Fabrication of Eco-Friendly Ultra-High-Performance Fiber-Reinforced Concrete
  10. Ashrafi Negar, Duarte José, Nazarian Shadi, Meisel Nicholas (2018-10)
    Evaluating the Relationship Between Deposition and Layer-Quality in Large-Scale Additive Manufacturing of Concrete
  11. Ashrafi Negar, Nazarian Shadi, Meisel Nicholas, Duarte José (2021-08)
    Experimental Calibration and Compensation for the Continuous Effect of Time, Number of Layers and Volume of Material on Shape Deformation in Small-Scale Additive Manufacturing of Concrete
  12. Ashrafi Negar, Nazarian Shadi, Meisel Nicholas, Duarte José (2020-10)
    Experimental Prediction of Material-Deformation in Large-Scale Additive Manufacturing of Concrete
  13. Ashrafi Negar, Nazarian Shadi, Meisel Nicholas, Duarte José (2022-04)
    A Grammar-Based Algorithm for Tool-Path-Generation:
    Compensating for Material-Deformation in the Additive Manufacturing of Concrete
  14. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  15. Ayegba Blessing, Egbe King-James, Nazar Ali, Huang Mingzhi et al. (2022-01)
    Resource Efficiency and Thermal Comfort of 3D Printable Concrete Building Envelopes Optimized by Performance Enhancing Insulation:
    A Numerical Study
  16. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  17. Brooks Adam, He Yawen, Farzadnia Nima, Seyfimakrani Shayan et al. (2022-03)
    Incorporating PCM-Enabled Thermal Energy Storage into 3D Printable Cementitious Composites
  18. Cao Xiangpeng, Yu Shiheng, Zheng Dapeng, Cui Hongzhi (2022-06)
    Nail-Planting to Enhance the Interface Bonding Strength in 3D Printed Concrete
  19. Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2020-04)
    Additive Manufacturing of Cantilever:
    From Masonry to Concrete 3D Printing
  20. Casagrande Lorenzo, Esposito Laura, Menna Costantino, Asprone Domenico et al. (2020-02)
    Effect of Testing Procedures on Buildability Properties of 3D Printable Concrete
  21. Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
    Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
  22. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  23. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  24. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  25. Chen Kailun, Liu Qiong, Chen Bing, Zhang Shishun et al. (2024-01)
    A Review on Effect of Raw Materials on the Performance of 3D Printed Geopolymer System for Construction
  26. Chougan Mehdi, Ghaffar Seyed, Jahanzat Mohammad, Albar Abdulrahman et al. (2020-04)
    The Influence of Nano-Additives in Strengthening Mechanical Performance of 3D Printed Multi-Binder Geopolymer Composites
  27. Christen Heidi, Zijl Gideon, Villiers Wibke (2023-02)
    Improving Building Thermal Comfort Through Passive Design:
    An Experimental Analysis of Phase-Change-Material 3D Printed Concrete
  28. Claßen Martin, Ungermann Jan, Sharma Rahul (2020-05)
    Additive Manufacturing of Reinforced Concrete:
    Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement
  29. Craveiro Flávio, Bártolo Helena, Gale Andrew, Duarte José et al. (2017-07)
    A Design Tool for Resource-Efficient Fabrication of 3D Graded Structural Building Components Using Additive Manufacturing
  30. Craveiro Flávio, Nazarian Shadi, Bártolo Helena, Bartolo Paulo et al. (2020-02)
    An Automated System for 3D Printing Functionally Graded Concrete-Based Materials
  31. Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
    3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
    Rheological, Thermal and Mechanical Properties
  32. Cui Hongzhi, Yu Shiheng, Cao Xiangpeng, Yang Haibin (2022-03)
    Evaluation of Printability and Thermal Properties of 3D Printed Concrete Mixed with Phase-Change-Materials
  33. Diggs-McGee Brandy, Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
    Print Time vs. Elapsed Time:
    A Temporal Analysis of a Continuous Printing Operation for Additive Constructed Concrete
  34. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  35. Dong Liang, Yang Yekai, Liu Zhongxian, Ren Quanchang et al. (2022-07)
    Microstructure and Mechanical Behavior of 3D Printed Ultra-High-Performance Concrete after Elevated Temperatures
  36. Dörfler Kathrin, Dielemans Gido, Lachmayer Lukas, Recker Tobias et al. (2022-06)
    Additive Manufacturing Using Mobile Robots:
    Opportunities and Challenges for Building Construction
  37. Ebrahimi Mahdi, Mohseni Mohammad, Aslani Alireza, Zahedi Rahim (2022-08)
    Investigation of Thermal Performance and Life Cycle Assessment of a 3D Printed Building
  38. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  39. Flatt Robert, Wangler Timothy (2022-05)
    On Sustainability and Digital Fabrication with Concrete
  40. Furet Benoît, Poullain Philippe, Garnier Sébastien (2019-04)
    3D Printing for Construction Based on a Complex Wall of Polymer-Foam and Concrete
  41. Gebhard Lukas, Esposito Laura, Menna Costantino, Mata-Falcón Jaime (2022-07)
    Inter-Laboratory Study on the Influence of 3D Concrete Printing Set-Ups on the Bond Behavior of Various Reinforcements
  42. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
    Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies
  43. Geng Zifan, Pan Hao, Zuo Wenqiang, She Wei (2022-05)
    Functionally Graded Lightweight Cement-Based Composites with Outstanding Mechanical Performances via Additive Manufacturing
  44. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  45. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  46. Hao Lucen, Xiao Jianzhuang, Sun Jingting, Xia Bing et al. (2022-06)
    Thermal Conductivity of 3D Printed Concrete With Recycled Fine Aggregate Composite Phase-Change-Materials
  47. Hass Lauri, Bos Freek, Salet Theo (2022-09)
    Characterizing the Bond Properties of Automatically Placed Helical Reinforcement in 3D Printed Concrete
  48. He Yawen, Zhang Yamei, Zhang Chao, Zhou Hongyu (2020-05)
    Energy-Saving-Potential of 3D Printed Concrete Building with Integrated Living Wall
  49. Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-12)
    Numerical Modelling-Strategies for Reinforced 3D Concrete Printed Elements
  50. Heever Marchant, Plessis Anton, Bester Frederick, Kruger Jacques et al. (2022-02)
    A Mechanistic Evaluation Relating Microstructural Morphology to a Modified Mohr-Griffith Compression-Shear Constitutive-Model for 3D Printed Concrete
  51. Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
    Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  52. Helsel Michelle, Popovics John, Stynoski Peter, Kreiger Eric (2021-03)
    Non-Destructive Testing to Characterize Inter-Layer Bonds of Idealized Concrete Additive Manufacturing Products
  53. Hojati Maryam, Memari Ali, Zahabi Mehrzad, Wu Zhengyu et al. (2022-06)
    Barbed-Wire Reinforcement for 3D Concrete Printing
  54. Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
    A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
    An Experimental and Computational Investigation
  55. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  56. Ji Guangchao, Ding Tao, Xiao Jianzhuang, Du Shupeng et al. (2019-05)
    A 3D Printed Ready-Mixed Concrete Power-Distribution Substation:
    Materials and Construction Technology
  57. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  58. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  59. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  60. Kondepudi Kala, Subramaniam Kolluru, Nematollahi Behzad, Bong Shin et al. (2022-05)
    Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing
  61. Kondepudi Kala, Subramaniam Kolluru, Nematollahi Behzad, Bong Shin et al. (2022-11)
    Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing:
    Correction
  62. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  63. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  64. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  65. Kuzmenko Kateryna, Ducoulombier Nicolas, Féraille Adélaïde, Roussel Nicolas (2022-05)
    Environmental Impact of Extrusion-Based Additive Manufacturing:
    Generic Model, Power-Measurements and Influence of Printing-Resolution
  66. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-08)
    Correlation Between Pore Characteristics and Tensile Bond Strength of Additive Manufactured Mortar Using X-Ray Computed Tomography
  67. Lee Keon-Woo, Lee Hojae, Choi Myoungsung (2022-07)
    Correlation Between Thixotropic Behavior and Buildability for 3D Concrete Printing
  68. Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
    Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing
  69. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  70. Liu Qiong, Cheng Shengbo, Sun Chang, Chen Kailun et al. (2023-11)
    Steel-Cable Bonding in Fresh Mortar and 3D Printed Beam Flexural Behavior
  71. Liu Chao, Chen Yuning, Xiong Yuanliang, Jia Lutao et al. (2022-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Buildability of 3D Printing Foam-Concrete:
    From Water State and Flocculation Point of View
  72. Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
    Buildability Prediction of 3D Printed Concrete at Early-Ages:
    A Numerical Study with Drucker-Prager-Model
  73. Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
    3D Printed Concrete with Recycled Glass:
    Effect of Glass Gradation on Flexural Strength and Microstructure
  74. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  75. Liu Junli, Setunge Sujeeva, Tran Jonathan (2022-07)
    3D Concrete Printing with Cement-Coated Recycled Crumb Rubber:
    Compressive and Microstructural Properties
  76. Liu Ke, Takasu Koji, Jiang Jinming, Zu Kun et al. (2023-12)
    Mechanical Properties of 3D Printed Concrete Components:
    A Review
  77. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  78. Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
    Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure
  79. Lowke Dirk, Mai (née Dressler) Inka, Keita Emmanuel, Perrot Arnaud et al. (2022-02)
    Material-Process Interactions in Particle-Bed 3D Printing and the Underlying Physics
  80. Lowke Dirk, Talke Daniel, Mai (née Dressler) Inka, Weger Daniel et al. (2020-05)
    Particle-Bed 3D Printing by Selective Cement-Activation:
    Applications, Material and Process Technology
  81. Ma Guowei, A Ruhan, Xie Panpan, Pan Zhu et al. (2022-01)
    3D Printable Aerogel-Incorporated Concrete:
    Anisotropy Influence on Physical, Mechanical, and Thermal Insulation Properties
  82. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  83. Ma Guowei, Sun Junbo, Wang Li, Aslani Farhad et al. (2018-09)
    Electromagnetic and Microwave-Absorbing Properties of Cementitious Composite for 3D Printing Containing Waste Copper Solids
  84. Marchment Taylor, Sanjayan Jay (2019-10)
    Mesh Reinforcing Method for 3D Concrete Printing
  85. Markin Slava, Krause Martin, Otto Jens, Schröfl Christof et al. (2021-06)
    3D Printing with Foam-Concrete:
    From Material Design and Testing to Application and Sustainability
  86. Mechtcherine Viktor, Michel Albert, Liebscher Marco, Schmeier Tobias (2020-06)
    Extrusion-Based Additive Manufacturing with Carbon Reinforced Concrete:
    Concept and Feasibility Study
  87. Meisel Nicholas, Watson Nathan, Bilén Sven, Duarte José et al. (2022-02)
    Design and System Considerations for Construction-Scale Concrete Additive Manufacturing in Remote Environments via Robotic-Arm-Deposition
  88. Meng Qingcheng, Hu Lei, Li Mingjian, Qi Xin (2023-09)
    Assessing the Environmental Impact of Building Life Cycle:
    A Carbon-Reduction-Strategy Through Innovative Design, Intelligent Construction, and Secondary Utilization
  89. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-01)
    Early-Age Hydration, Rheology and Pumping Characteristics of CSA Cement-Based 3D Printable Concrete
  90. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  91. Mollah Md., Comminal Raphaël, Silva Wilson, Šeta Berin et al. (2023-07)
    Computational Fluid Dynamics Modelling and Experimental Analysis of Reinforcement-Bar-Integration in 3D Concrete Printing
  92. Muñoz Ivan, Madrid Javier, Muñiz Manuel, Uhart Maylis et al. (2021-01)
    Life Cycle Assessment of Integrated Additive-Subtractive Concrete 3D Printing
  93. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
    Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing
  94. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  95. Nematollahi Behzad, Xia Ming, Sanjayan Jay (2019-07)
    Post-processing Methods to Improve Strength of Particle-Bed 3D Printed Geopolymer for Digital Construction Applications
  96. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  97. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  98. Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
    Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing
  99. Ooms Ticho, Vantyghem Gieljan, Coile Ruben, Corte Wouter (2020-12)
    A Parametric Modelling-Strategy for the Numerical Simulation of 3D Concrete Printing with Complex Geometries
  100. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  101. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  102. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  103. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2022-07)
    Enhancing the Properties of Foam-Concrete 3D Printing Using Porous Aggregates
  104. Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
    Nailing of Layers:
    A Promising Way to Reinforce Concrete 3D Printing Structures
  105. Perrot Arnaud, Rangeard Damien, Courteille Eric (2018-04)
    3D Printing of Earth-Based Materials:
    Processing Aspects
  106. Pierre Alexandre, Weger Daniel, Perrot Arnaud, Lowke Dirk (2018-01)
    Penetration of Cement-Pastes into Sand-Packings During 3D Printing:
    Analytical and Experimental Study
  107. Pott Ursula, Stephan Dietmar (2021-04)
    Penetration-Test as a Fast Method to Determine Yield-Stress and Structural Build-Up for 3D Printing of Cementitious Materials
  108. Putten Jolien, Volder Melissa, Heede Philip, Schutter Geert et al. (2020-07)
    3D Printing of Concrete:
    The Influence on Chloride Penetration
  109. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  110. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  111. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  112. Ramakrishnan Sayanthan, Muthukrishnan Shravan, Sanjayan Jay, Pasupathy Kirubajiny (2021-08)
    Concrete 3D Printing of Lightweight Elements Using Hollow-Core Extrusion of Filaments
  113. Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
    Setting-on-Demand for Digital Concrete:
    Principles, Measurements, Chemistry, Validation
  114. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  115. Sambucci Matteo, Marini Danilo, Sibai Abbas, Valente Marco (2020-08)
    Preliminary Mechanical Analysis of Rubber-Cement Composites Suitable for Additive Process Construction
  116. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Gowripalan Nadarajah (2023-04)
    Effects of Different Orientation-Angle, Size, Surface-Roughness, and Heat-Curing on Mechanical Behavior of 3D Printed Cement-Mortar with and without Glass-Fiber in Powder-Based 3DP
  117. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Sanjayan Jay (2019-12)
    Dimensional Accuracy, Flowability, Wettability, and Porosity in Inkjet 3DP for Gypsum and Cement Mortar Materials
  118. Shakor Pshtiwan, Nejadi Shami, Sutjipto Sheila, Paul Gavin et al. (2020-01)
    Effects of Deposition-Velocity in the Presence-Absence of E6-Glass-Fiber on Extrusion-Based 3D Printed Mortar
  119. Shakor Pshtiwan, Sanjayan Jay, Nazari Ali, Nejadi Shami (2017-02)
    Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing
  120. Shao Lijing, Feng Pan, Zuo Wenqiang, Wang Haochuan et al. (2022-02)
    A Novel Method for Improving the Printability of Cement-Based Materials:
    Controlling the Releasing of Capsules Containing Chemical Admixtures
  121. Sikora Paweł, Techman Mateusz, Federowicz Karol, Khayatt Ahmed et al. (2022-07)
    Insight into the Microstructural and Durability Characteristics of 3D Printed Concrete:
    Cast versus Printed Specimens
  122. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  123. Soto Borja, Agustí-Juan Isolda, Hunhevicz Jens, Joss Samuel et al. (2018-05)
    Productivity of Digital Fabrication in Construction:
    Cost and Time-Analysis of a Robotically Built Wall
  124. Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
    Elastic Buckling and Plastic Collapse During 3D Concrete Printing
  125. Sun Junbo, Huang Yimiao, Aslani Farhad, Wang Xiangyu et al. (2021-05)
    Mechanical Enhancement for EMW-Absorbing Cementitious Material Using 3D Concrete Printing
  126. Sun Jingting, Xiao Jianzhuang, Li Zhengrong, Feng Xiwen (2021-03)
    Experimental Study on the Thermal Performance of a 3D Printed Concrete Prototype Building
  127. Sun Bochao, Zeng Qiang, Wang Dianchao, Zhao Weijian (2022-10)
    Sustainable 3D Printed Mortar with CO2 Pretreated Recycled Fine Aggregates
  128. Talke Daniel, Saile Bettina, Meier Niklas, Herding Friedrich et al. (2023-03)
    Particle-Bed 3D Printing by Selective Cement-Activation:
    Influence of Process Parameters on Particle-Bed Density
  129. Tao Jie-Lin, Lin Can, Luo Qiling, Long Wujian et al. (2022-07)
    Leveraging Internal Curing Effect of Fly-Ash-Cenosphere for Alleviating Autogenous Shrinkage in 3D Printing
  130. Tao Yaxin, Ren Qiang, Lesage Karel, Tittelboom Kim et al. (2022-07)
    Shape Stability of 3D Printable Concrete with River and Manufactured Sand Characterized by Squeeze Flow
  131. Tay Yi, Li Mingyang, Tan Ming (2019-04)
    Effect of Printing Parameters in 3D Concrete Printing:
    Printing Region and Support Structures
  132. Tay Yi, Lim Jian, Li Mingyang, Tan Ming (2022-03)
    Creating Functionally Graded Concrete Materials with Varying 3D Printing Parameters
  133. Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
    Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
    A Systematic Literature Review
  134. Toklu Yusuf, Bekdaş Gebrail, Geem Zong (2020-06)
    Harmony-Search-Optimization of Nozzle Movement for Additive Manufacturing of Concrete Structures and Concrete Elements
  135. Tošić Zlata, Eichenauer Martin, Ivaniuk Egor, Lordick Daniel et al. (2022-07)
    Design and Optimization of Free-Form Surfaces for Modular Concrete 3D Printing
  136. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  137. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  138. Vespalec Arnošt, Novák Josef, Kohoutková Alena, Vosynek Petr et al. (2020-11)
    Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing
  139. Voney Vera, Odaglia Pietro, Brumaud Coralie, Dillenburger Benjamin et al. (2020-07)
    Geopolymer Formulation for Binder-Jet 3D Printing
  140. Wan Qian, Wang Li, Ma Guowei (2022-07)
    Continuous and Adaptable Printing Path Based on Transfinite Mapping for 3D Concrete Printing
  141. Wang Lining, Aslani Farhad, Mukherjee Abhijit (2022-04)
    Development of 3D Printable Self-Sensing Cementitious Composites
  142. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  143. Wang Li, Liu Yi, Yang Yu, Li Yanfeng et al. (2021-04)
    Bonding Performance of 3D Printing Concrete with Self-Locking Interfaces Exposed to Compression-Shear and Compression-Splitting Stresses
  144. Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
    Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails
  145. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  146. Warsi Syed, Panda Biranchi, Biswas Pankaj (2023-12)
    Exploring Fiber Addition Methods and Mechanical Properties of Fiber-Reinforced 3D Printed Concrete:
    A Review
  147. Weger Daniel, Gehlen Christoph (2021-01)
    Particle-Bed Binding by Selective Paste-Intrusion:
    Strength and Durability of Printed Fine-Grain Concrete Members
  148. Weng Yiwei, Li Mingyang, Liu Zhixin, Lao Wenxin et al. (2018-12)
    Printability and Fire Performance of a Developed 3D Printable Fiber-Reinforced Cementitious Composites under Elevated Temperatures
  149. Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
    Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach
  150. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  151. Westerlind Helena, Vargas José (2020-07)
    Knitting Concrete
  152. Wolfs Robert, Bos Freek, Salet Theo (2018-06)
    Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete
  153. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  154. Xiao Jianzhuang, Lv Zhenyuan, Duan Zhenhua, Hou Shaodan (2022-03)
    Study on Preparation and Mechanical Properties of 3D Printed Concrete with Different Aggregate-Combinations
  155. Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
    Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
    A Cleaner Perspective on 3D Printing
  156. Xiao Jianzhuang, Zou Shuai, Yu Ying, Wang Yu et al. (2020-09)
    3D Recycled Mortar Printing:
    System-Development, Process-Design, Material-Properties and On-Site-Printing
  157. Xu Nuoyan, Qian Ye, Yu Jing, Leung Christopher (2022-05)
    Tensile Performance of 3D Printed Strain-Hardening Cementitious Composites Considering Material-Parameters, Nozzle-Size and Printing-Pattern
  158. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  159. Yang Yekai, Wu Chengqing, Liu Zhongxian, Zhang Hai (2021-12)
    3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads
  160. Yao Yue, Hu Mingming, Maio Francesco, Cucurachi Stefano (2019-08)
    Life Cycle Assessment of 3D Printing Geopolymer Concrete:
    An Ex‐Ante Study
  161. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder
  162. Yu Shiwei, Sanjayan Jay, Du Hongjian (2022-07)
    Effects of Cement Mortar Characteristics on Aggregate-Bed 3D Concrete Printing
  163. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  164. Zareiyan Babak, Khoshnevis Behrokh (2017-08)
    Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
  165. Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
    Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer
  166. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  167. Zhang Chao, Jia Zijian, Wang Xianggang, Jia Lutao et al. (2022-05)
    A Two-Phase Design-Strategy Based on the Composite of Mortar and Coarse Aggregate for 3D Printable Concrete with Coarse Aggregate
  168. Zhang Yu, Qiao Hongxia, Qian Rusheng, Xue Cuizhen et al. (2022-02)
    Relationship Between Water-Transport Behavior and Inter-Layer Voids of 3D Printed Concrete
  169. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  170. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  171. Zhi Peng, Wu Yuching, Yang Qianfan, Kong Xiangrui et al. (2022-03)
    Effect of Spiral Blade Geometry on 3D Printed Concrete Rheological Properties and Extrudability Using Discrete Event Modeling
  172. Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
    Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
    On the Evaluation of Buildability
  173. Zhu Binrong, Pan Jinlong, Li Junrui, Wang Penghui et al. (2022-07)
    Relationship Between Microstructure and Strain-Hardening Behavior of 3D Printed Engineered Cementitious Composites
  174. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  175. Zuo Wenqiang, Dong Chenghao, Keita Emmanuel, Roussel Nicolas (2020-07)
    Penetration Study of Liquid in Powder-Bed for 3D Powder-Bed Printing

20 Citations

  1. Teixeira João, Jesus Manuel, Rangel Bárbara, Maia Lino et al. (2026-01)
    Expanding 3D Concrete Printing Customization with Biomimetic Textures
  2. Sunny Akash, Jayaprakash Jaganathan (2025-12)
    Unveiling the Printing Success of Concrete 3D Printed Models:
    A Simulation Study with Voxel Print and Abaqus Using Design of Experiments
  3. Sifan Mohamed, Upasiri Irindu, Poologanathan Keerthan, Popo-Ola Sunday et al. (2025-12)
    Fire Performance and Design of LSF Wall Panels with 3D Printed Concrete and Steel Lipped Channel Sections
  4. Geng Renyu, Jiang Jinming, Du Pengcong, Zhang Huiliang et al. (2025-11)
    Multiscale Thermal Optimization of 3D-Printed Walls:
    Integrating Structure, Material, and Process with Fire-Thermal Synergy
  5. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  6. Khoury Eliane, Cheikh Khadija, Schutter Geert, Cazacliu Bogdan et al. (2025-11)
    Using Vacuum Mixing for 3D Printing of Mortars Made with Recycled Sand
  7. Gonsalves Nicolas, Morgan Ashlei, Thiele Heidi, Olarra Andre et al. (2025-10)
    3D Printing of Sustainable Infrastructure Using Rapid-Set Clay Concrete with Biobased Additives
  8. Yang Shuai, Li Fei, Lu Ya, Xu Xiaoming et al. (2025-08)
    Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization
  9. Maroszek Marcin, Hager Izabela, Mróz Katarzyna, Sitarz Mateusz et al. (2025-08)
    Anisotropy of Mechanical Properties of 3D-Printed Materials:
    Influence of Application Time of Subsequent Layers
  10. Si Wen, Khan Mehran, McNally Ciaran (2025-08)
    Effect of Nano Silica with High Replacement of GGBS on Enhancing Mechanical Properties and Rheology of 3D Printed Concrete
  11. Ingle Vaibhav, Prem Prabhat (2025-07)
    Acoustic Emission Examination of 3D Printed Ultra-High Performance Concrete with and Without Coarse Aggregate Under Fresh and Hardened States
  12. Cho Eunsan, Gwon Seongwoo, Cha Soowon, Shin Myoungsu (2025-04)
    Impact of Accelerator on Rheological Properties of Cement Composites with Cellulose Microfibers:
    3D Printing Perspective
  13. Zhang Yuying, Zhu Xiaohong, Li Muduo, Zhang Chao et al. (2025-04)
    3D Printing Technology in Concrete Construction
  14. Ravichandran Darssni, Prem Prabhat, Giridhar Greeshma, Bhaskara Gollapalli et al. (2025-04)
    Time-Dependent Properties of 3D-Printed UHPC with Silica Sand, Copper Slag, and Fibers
  15. Rudziewicz Magdalena, Maroszek Marcin, Hutyra Adam, Góra Michał et al. (2025-02)
    Influence of Foaming Agents and Stabilizers on Porosity in 3D Printed Foamed Concrete
  16. Murali Gunasekaran, Leong Sing (2024-11)
    Waste-Driven Construction:
    A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development
  17. Chen Yidong, Zhang Yunsheng, Quan Hongzhu, Liu Cheng et al. (2024-10)
    Early-Age Time-Dependent Mechanical Properties of 3D Printed Concrete with Coarse Aggregates
  18. Wolfs Robert (2024-09)
    The Status Quo of 3D Concrete Printing:
    Are We There Yet?
  19. Lin Xiqiang, Huo Liang, Li Guoyou, Wang Hailong et al. (2024-09)
    On-Site Deployment of 3D Construction Printing for the Building a Two-Story Building in China
  20. Liu Chao, Zhang Zedi, Jia Zijian, Cao Ruilin et al. (2024-07)
    Quantitative Characterization of Bubble-Stability of Foam-Concrete Throughout Extrusion-Process:
    From Yield-Stress , Viscosity and Surface Tension Point of View

BibTeX
@article{wang_li_guo_kash.2024.C3PTiSC,
  author            = "Xiaonan Wang and Wengui Li and Yipu Guo and Alireza Kashani and Kejin Wang and Liberato Ferrara and Isabel Agudelo",
  title             = "Concrete 3D Printing Technology in Sustainable Construction: A Review on Raw Materials, Concrete Types and Performances",
  doi               = "10.1016/j.dibe.2024.100378",
  year              = "2024",
  journal           = "Developments in the Built Environment",
  volume            = "17",
  pages             = "100378",
}
Formatted Citation

X. Wang, “Concrete 3D Printing Technology in Sustainable Construction: A Review on Raw Materials, Concrete Types and Performances”, Developments in the Built Environment, vol. 17, p. 100378, 2024, doi: 10.1016/j.dibe.2024.100378.

Wang, Xiaonan, Wengui Li, Yipu Guo, Alireza Kashani, Kejin Wang, Liberato Ferrara, and Isabel Agudelo. “Concrete 3D Printing Technology in Sustainable Construction: A Review on Raw Materials, Concrete Types and Performances”. Developments in the Built Environment 17 (2024): 100378. https://doi.org/10.1016/j.dibe.2024.100378.