Skip to content

A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete (2023-11)

Material-Preparation, Construction-Process and Structure-Level

10.1016/j.conbuildmat.2023.133887

 Zhao Zengfeng,  Ji Chenyuan,  Xiao Jianzhuang, Yao Lei, Lin Can,  Ding Tao,  Ye Taohua
Journal Article - Construction and Building Materials, Vol. 409, No. 133887

Abstract

This paper presents a critical review of reducing the life-cycle environmental impact of 3D printing concrete (3DPC) systems from the perspectives of material preparation, construction process and structure level. The material requirements of 3DPC are first introduced, then the utilization of low-carbon cementitious materials, recycled aggregates, admixture and fibres in 3DPC is explored, along with their effect on workability and mechanical property. The potential for improving the environmental benefits by applying better design and printing parameters are discussed in the subsequent part. Two main delivery systems and the effect of printing parameters (including printing speed, standoff distance) are presented. Finally, the behaviour of 3D printing components (beam, slab and column) is examined at the structural level. 3D printing technology has a high degree of freedom, thus better understanding of the component behaviour can save materials and improve strength. Finding a balance between component’s performance and environmental impact is a crucial work in future.

90 References

  1. Abdalla Hadeer, Fattah Kazi, Abdallah Mohamed, Tamimi Adil (2021-10)
    Environmental Footprint and Economics of a Full-Scale 3D Printed House
  2. Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
    Potential Benefits of Digital Fabrication for Complex Structures:
    Environmental Assessment of a Robotically Fabricated Concrete Wall
  3. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  4. Allouzi Rawan, Azhari Wael, Allouzi Rabab (2020-05)
    Conventional Construction and 3D Printing:
    A Comparison Study on Material-Cost in Jordan
  5. Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
    Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing
  6. Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2022-09)
    3D Printing Effect on the Compressive Strength of Concrete Structures
  7. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  8. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  9. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  10. Beigh Mirza, Nerella Venkatesh, Schröfl Christof, Mechtcherine Viktor (2015-06)
    Studying the Rheological Behavior of Limestone-Calcined-Clay-Cement (LC3) Mixtures in the Context of Extrusion-Based 3D Printing
  11. Biricik Öznur, Mardani Ali (2022-05)
    Parameters Affecting Thixotropic Behavior of Self-Compacting Concrete and 3D Printable Concrete:
    A State of the Art Review
  12. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  13. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  14. Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
    Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
  15. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  16. Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
    Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
    Printability and Direction-Dependent Mechanical Performance
  17. Christen Heidi, Zijl Gideon, Villiers Wibke (2022-05)
    The Incorporation of Recycled Brick-Aggregate in 3D Printed Concrete
  18. Dai Shuo, Zhu Huajun, Zhai Munan, Wu Qisheng et al. (2021-06)
    Stability of Steel-Slag as Fine Aggregate and Its Application in 3D Printing Materials
  19. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  20. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  21. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  22. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  23. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
    An Approach to Develop Printable Strain-Hardening Cementitious Composites
  24. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
    Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies
  25. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  26. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  27. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  28. Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
    A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
    An Experimental and Computational Investigation
  29. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  30. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  31. Krishnaraja A., Guru K. (2021-02)
    3D Printing Concrete:
    A Review
  32. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  33. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  34. Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
    Additive Construction:
    State of the Art, Challenges and Opportunities
  35. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  36. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  37. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  38. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  39. Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
    3D Printed Concrete with Recycled Glass:
    Effect of Glass Gradation on Flexural Strength and Microstructure
  40. Liu Haoran, Xiao Jianzhuang, Ding Tao (2023-03)
    Flexural Performance of 3D Printed Composite Beams with ECC and Recycled Fine Aggregate Concrete:
    Experimental and Numerical Analysis
  41. Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
    Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites
  42. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  43. Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
    Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent
  44. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  45. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  46. Ma Guowei, Zhang Junfei, Wang Li, Li Zhijian et al. (2018-06)
    Mechanical Characterization of 3D Printed Anisotropic Cementitious Material by the Electromechanical Transducer
  47. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  48. Mesnil Romain, Poussard Valentin, Sab Karam, Caron Jean-François (2022-11)
    On the Geometrical Origin of the Anisotropy in Extrusion-Based 3D Printed Structures
  49. Nerella Venkatesh, Beigh Mirza, Fataei Shirin, Mechtcherine Viktor (2018-11)
    Strain-Based Approach for Measuring Structural Build-Up of Cement-Pastes in the Context of Digital Construction
  50. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  51. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  52. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  53. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  54. Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
    The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete
  55. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  56. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  57. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  58. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  59. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  60. Perrot Arnaud, Mélinge Yannick, Rangeard Damien, Micaelli Francesca et al. (2012-06)
    Use of Ram Extruder as a Combined Rheo-Tribometer to Study the Behavior of High-Yield-Stress Fluids at Low Strain-Rate
  61. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  62. Qian Ye, Schutter Geert (2018-06)
    Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE)
  63. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  64. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  65. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  66. Shakor Pshtiwan, Sanjayan Jay, Nazari Ali, Nejadi Shami (2017-02)
    Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing
  67. Skibicki Szymon, Pułtorak Monika, Kaszyńska Maria, Hoffmann Marcin et al. (2022-04)
    The Effect of Using Recycled PET-Aggregates on Mechanical and Durability Properties of 3D Printed Mortar
  68. Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
    PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
    Mechanical Properties and Durability
  69. Tay Yi, Li Mingyang, Tan Ming (2019-04)
    Effect of Printing Parameters in 3D Concrete Printing:
    Printing Region and Support Structures
  70. Ting Guan, Quah Tan, Lim Jian, Tay Yi et al. (2022-01)
    Extrudable Region Parametrical Study of 3D Printable Concrete Using Recycled-Glass Concrete
  71. Ting Guan, Tay Yi, Tan Ming (2021-04)
    Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing
  72. Voigt Thomas, Malonn Tim, Shah Surendra (2005-10)
    Green and Early-Age Compressive Strength of Extruded Cement Mortar Monitored with Compression Tests and Ultrasonic Techniques
  73. Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
    Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach
  74. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  75. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  76. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  77. Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
    Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates
  78. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  79. Xiao Jianzhuang, Lv Zhenyuan, Duan Zhenhua, Hou Shaodan (2022-03)
    Study on Preparation and Mechanical Properties of 3D Printed Concrete with Different Aggregate-Combinations
  80. Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
    Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
    A Cleaner Perspective on 3D Printing
  81. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  82. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  83. Yue Hongfei, Hua Sudong, Qian Hao, Yao Xiao et al. (2021-12)
    Investigation on Applicability of Spherical Electric Arc-Furnace-Slag as Fine Aggregate in Superplasticizer-Free 3D Printed Concrete
  84. Zareiyan Babak, Khoshnevis Behrokh (2017-08)
    Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
  85. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  86. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  87. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  88. Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
    Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing
  89. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  90. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D

27 Citations

  1. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
    Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
    A Bibliometric and Systematic Review
  2. Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
    Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
    A Systematic Review
  3. Guerrero Ana, Asensio Eloy, Fernández Fernando (2025-12)
    Large‐Format Additive Manufacturing with Cement and Clays:
    Characterization Methods
  4. Tao Jie-Lin, Hu Shengming, Duan Zhenhua, Jiao Dengwu (2025-11)
    Magneto-Responsive Flow Behavior and Early-Age Microstructural Evolution of 3D Printing Lightweight Concrete with Fly Ash Cenospheres
  5. Khoury Eliane, Cheikh Khadija, Schutter Geert, Cazacliu Bogdan et al. (2025-11)
    Using Vacuum Mixing for 3D Printing of Mortars Made with Recycled Sand
  6. Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2025-10)
    Dual Strategies for Enhancing Carbonation Curing in 3D Printing Steel Slag Mortars:
    Material Modification and Curing Process Innovation
  7. Zhou Juanlan, Shi Xiangwen, Zheng Hongrun, Jin Ruoyu et al. (2025-09)
    Investigating the Effects of Hybrid PVA/BF Fibers in Low-Carbon 3D Printed Concrete with Recycled Aggregates:
    Rheology, Strength, and Anisotropy
  8. Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
    Industrial Waste in 3D Printed Concrete:
    A Mechanistic Review on Rheological Control and Printability
  9. Liu Shijie, Liu Tong, Alqurashi Muwaffaq, Abdou Elabbasy Ahmed et al. (2025-09)
    Advancing 3D-Printed Fiber-Reinforced Concrete for Sustainable Construction:
    A Comparative Optimization Based Study of Hybrid Machine Intelligence Models for Predicting Mechanical Strength and CO₂ Emissions
  10. Bai Gang, Wang Li, Li Zhijian, Qu Yao et al. (2025-09)
    Integrating Prestress into 3D Printed Ultra-High Performance Concrete Composite Beams for Superior Flexural Performance
  11. Li Nan, Deng Yongjie, Li Weihong, Li Lingyu et al. (2025-08)
    Performance of Active-Magnesia-Based Magnesium Phosphate Cement and Application of Rapid-Solidification 3D Printing Technology
  12. Khare Karan, Khan Subim, Lal Dhirajkumar, Sonawane Pavankumar et al. (2025-07)
    Design and Development of a Nozzle Assembly for 3D Concrete Printing Applications
  13. Gribonval Alice, Pierre Maxime, Ducoulombier Nicolas, Sab Karam et al. (2025-05)
    Multi-Physics Modelling of 3D-Printed Concrete Evolution in Environmental Conditions
  14. Duan Zhenhua, Tao Jie-Lin, Lin Can, Jiao Dengwu et al. (2025-02)
    3D Printing-Driven Dynamic Migration of Lightweight Microspheres in the Printable Mortars:
    Experiment and Modelling
  15. Liu Chao, Liu Huawei, Wu Yiwen, Wu Jian et al. (2025-02)
    Effect of X-Ray CT Characterized Pore Structure on the Freeze-Thaw Resistance of 3D Printed Concrete with Recycled Coarse Aggregate
  16. Liu Xinhao, Hu Jiajun, Guo Xiaolu (2025-01)
    Improved Interlayer-Bonding of 3D Printed Fiber-Reinforced Geopolymer by Healing-Agents:
    Properties, Mechanism, and Environmental Impacts
  17. Nadi Mouad, Majdoubi Hicham, Haddaji Younesse, Bili Oumaima et al. (2025-01)
    Digital Fabrication Processes for Cementitious Materials Using Three-Dimensional 3D Printing Technologies
  18. Zhang Yonghong, Cui Suping, Wang Xinxin, Yang Bohao et al. (2025-01)
    Microstructure and Performance of Recycled Wind Turbine Blade-Based 3D Printed Concrete
  19. Mohammed Arafat, Tamimi Adil, Abdwais Ahmed (2024-12)
    Structural Performance of 3D Concrete Printed Load-Bearing Walls
  20. Jin Willy, Caron Jean-François, Ouellet-Plamondon Claudiane (2024-11)
    Minimizing the Carbon Footprint of 3D Printing Concrete:
    Leveraging Parametric LCA and Neural Networks Through Multi-Objective-Optimization
  21. Gomaa Shady, Irizarry Elmer, Ahmed Ayesha, Rosa Raul et al. (2024-11)
    3D Printing of Ultra-High-Performance Concrete:
    Shape Stability for Various Printing Systems
  22. Althoey Fadi, Zaid Osama, Ahmed Bilal, Elhadi Khaled (2024-10)
    Impact of Double Hooked Steel-Fibers and Nano-Kaolin-Clay on Fresh Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete
  23. Shivendra Bandoorvaragerahalli, Sharath Chandra Sathvik, Singh Atul, Kumar Rakesh et al. (2024-09)
    A Path Towards SDGs:
    Investigation of the Challenges in Adopting 3D Concrete Printing in India
  24. Muy Yeakleang, Courard Luc, Garnavault Xavier, Bulteel David et al. (2024-06)
    Mechanical Properties and Freezing and Thawing Behavior of 3D Printing Concrete Containing Recycled Fine Aggregates from Construction and Demolition Waste
  25. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites
  26. An Dong, Zhang Yixia, Yang Chunhui (2024-05)
    Incorporating Coarse Aggregates into 3D Concrete Printing from Mixture Design and Process-Control to Structural Behavior and Practical Applications:
    A Review
  27. Chamatete Kunda, Yalçınkaya Çağlar (2024-03)
    Numerical Evaluation on Thermal Performance of 3D Printed Concrete Walls:
    The Effects of Lattice-Type, Filament-Width and Granular-Filling-Material

BibTeX
@article{zhao_ji_xiao_yao.2023.ACRoRtEIo3PC,
  author            = "Zengfeng Zhao and Chenyuan Ji and Jianzhuang Xiao and Lei Yao and Can Lin and Tao Ding and Taohua Ye",
  title             = "A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete: Material-Preparation, Construction-Process and Structure-Level",
  doi               = "10.1016/j.conbuildmat.2023.133887",
  year              = "2023",
  journal           = "Construction and Building Materials",
  volume            = "409",
  pages             = "133887",
}
Formatted Citation

Z. Zhao, “A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete: Material-Preparation, Construction-Process and Structure-Level”, Construction and Building Materials, vol. 409, p. 133887, 2023, doi: 10.1016/j.conbuildmat.2023.133887.

Zhao, Zengfeng, Chenyuan Ji, Jianzhuang Xiao, Lei Yao, Can Lin, Tao Ding, and Taohua Ye. “A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete: Material-Preparation, Construction-Process and Structure-Level”. Construction and Building Materials 409 (2023): 133887. https://doi.org/10.1016/j.conbuildmat.2023.133887.