Skip to content

Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent (2019-04)

10.1016/j.conbuildmat.2019.03.186

 Lu Bing,  Qian Ye,  Li Mingyang,  Weng Yiwei,  Leong Kah,  Tan Ming,  Qian Shunzhi
Journal Article - Construction and Building Materials, Vol. 211, pp. 1073-1084

Abstract

3D printing is a novel construction method, which utilizes sequential deposition of printable material to build structures. It contributes to the automation in civil engineering and offers advantages of design, greenness and efficiency. Similarities between conventional spray technology and 3D printing indicate the feasibility of spray-based 3D printing, which could enhance the automation in vertical and overhead construction. However, low dimensional accuracy of sprayed profiles with conventional materials greatly affects the quality of spray-based 3D printing. This study contributes to the development of cementitious material to improve the dimensional accuracy of spray-based 3D printing. In this study, fly ash cenosphere and air entraining agent were introduced to obtain the optimal mixture design considering the delivery and deposition requirements. Subsequent spray tests show that the optimal mixture has the smallest splash width and most uniform material distribution among all the designed mixtures. Analysis of deposition process reveals that the distribution of sprayed material is closely related with its rheological properties, which could guide the future research work on spray-based printing of cementitious materials.

17 References

  1. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  2. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  3. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  4. Khoshnevis Behrokh, Yuan Xiao, Zahiri Behnam, Zhang Jing et al. (2015-09)
    Deformation-Analysis of Sulfur-Concrete Structures Made by Contour Crafting
  5. Lao Wenxin, Li Mingyang, Masia Lorenzo, Tan Ming (2017-08)
    Approaching Rectangular Extrudate in 3D Printing for Building and Construction by Experimental Iteration of Nozzle Design
  6. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  7. Lindemann Hendrik, Gerbers Roman, Ibrahim Serhat, Dietrich Franz et al. (2018-09)
    Development of a Shotcrete 3D Printing (SC3DP) Technology for Additive Manufacturing of Reinforced Freeform Concrete Structures
  8. Lu Bing, Li Mingyang, Lao Wenxin, Weng Yiwei et al. (2018-08)
    Effect of Spray-Based Printing Parameters on Cementitious Material-Distribution
  9. Lu Bing, Li Mingyang, Qian Shunzhi, Leong Kah et al. (2018-05)
    Develop Cementitious Materials Incoporating Fly-Ash-Cenophere for Spray-Based 3D Printing
  10. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  11. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  12. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  13. Qian Ye, Schutter Geert (2018-06)
    Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE)
  14. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  15. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  16. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  17. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink

84 Citations

  1. Sun Yuhang, Yang Xiaojie, Liu Xiongfei, Ma Guowei et al. (2025-12)
    Coordinated Spray-Based 3D Printing of Reinforced Concrete Structure:
    A Multi-Angle Strategy for Blockage Mitigation
  2. Ramezani Mahyar, Kilic Ugur, Sherif Muhammad, Arce Gabriel et al. (2025-12)
    Rheological Properties and Mechanical Response of Bio-Based Graphene Enhanced Additively Manufactured Cementitious Composites
  3. Sun Yuhang, Li Chuang, Liu Xiongfei, Wang Li et al. (2025-11)
    Enhancing Sulfate Resistance of Spray-Based 3D Printed Recycled Tunnel Slag Concrete Through Polypropylene Fiber Optimization
  4. Lin Xing-Tao, Xu Shuhao, Chen Xiangsheng (2025-08)
    Optimization of Building Structures Based on Additive Manufacturing:
    A Review
  5. Zafar Tayyab, Zafar Muhammad, Hojati Maryam (2025-07)
    Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions
  6. Cui Weijiu, Ji Dongsheng, Shen Liang, Su Shiyong et al. (2025-06)
    A Neural Network-Based Model for Assessing 3D Printable Concrete Performance in Robotic Fabrication
  7. Tao Yaxin, Wang Li, Wangler Timothy, Lesage Karel et al. (2025-05)
    A (P)Review:
    Adhesion of Printcrete for Tunnel Structures
  8. Sun Yuhang, Wang Haonan, Zhang Yi, Liu Xiongfei et al. (2025-05)
    Spray-Based 3D Printed Foam Concrete:
    Stress Concentration Relieve Utilization
  9. Liu Xiongfei, Yang Xiaojie, Sun Yuhang (2025-04)
    Synchronous Construction of Spray-Based 3D Printed Reinforced Concrete Structure:
    Effect of 2.5D Rebar Structure on the Flexural Performance of Slab
  10. Jiang Yu, Zhang Qingxin, Tabbaa Abir, Daly Ronan (2025-03)
    The Critical Role of Time-Dependent Rheology for Improved Quality Control of 3D Printed Cementitious Structures
  11. Zafar Muhammad, Shahid Adnan, Sedghi Reza, Hojati Maryam (2025-03)
    Optimization of Biopolymer Additives for 3D Printable Cementitious Systems:
    A Design of Experiment Approach
  12. Araújo Rísia, Martinelli Antônio, Cabral Kleber, Nunes Ueslei et al. (2025-03)
    Effect of Lightweight Expanded Clay Aggregate (LECA) On the Printability of Cementitious Compositions for 3D Printing
  13. Liu Xiongfei, Guo Pei, Wang Haonan, Zhang Yi (2025-03)
    Spray-Based 3D Printed Cementitious Electromagnetic Wave Absorption Materials:
    Optimization with Structures Design
  14. Teng Fei, Xu Fengming, Yang Minxin, Yu Jie et al. (2025-02)
    Development of Sustainable Strain-Hardening Cementitious Composites Containing Diatomite for 3D Printing
  15. Liu Xiongfei, Li Chuang, Guo Pei, Wang Li et al. (2025-02)
    Spray-Based 3D Printed Tunnel Slag Concrete:
    Evaluation for Printability and Mechanical Performance
  16. Vlieger Jentel, Blaakmeer Jan, Gruyaert Elke, Cizer Özlem (2025-01)
    Assessing Static and Dynamic Yield-Stress of 3D Printing Mortar with Recycled Sand:
    Influence of Sand-Geometry, Fineness Modulus, and Water-to-Binder Ratio
  17. Ma Liangzhu, Yin Deshun, Ren Jiangtao, Tian Mingyuan et al. (2024-09)
    An Effective Thixotropic Structural-Dynamics Rheological-Model for 3D Printed Concrete Materials in the Flow-State
  18. Ding Yao, Liu Jiepeng, Ou Xingjian, Nishiwaki Tomoya et al. (2024-08)
    3D Printing Hybrid-Fiber-Reinforced Engineered Cementitious Composites:
    Feasibility in Long-Open-Time Applications
  19. Lu Bing, Li Mingyang, Qian Shunzhi, Li King et al. (2024-07)
    High-Performance 3D Concrete Printing with Zeolite
  20. Wang Tingpeng, Mao Chao, Sun Bing, Li Zhiqiang (2024-07)
    Genealogy of Construction Robotics
  21. Teng Fei, Ye Junhong, Yu Jie, Li Heng et al. (2024-07)
    Development of Strain-Hardening Cementitious Composites (SHCC) As Bonding Materials to Enhance Inter-Layer and Flexural Performance of 3D Printed Concrete
  22. Kilic Ugur, Soliman Nancy, Omran Ahmed, Ozbulut Osman (2024-06)
    Effects of Cellulose Nanofibrils on Rheological and Mechanical Properties of 3D Printable Cement Composites
  23. Khan Mehran, McNally Ciaran (2024-05)
    Recent Developments on Low-Carbon 3D Printing Concrete:
    Revolutionizing Construction Through Innovative Technology
  24. Tao Yaxin, Yuan Yong (2024-05)
    3D Concrete Printing for Tunnel Linings:
    Opportunities and Challenges
  25. Wang Xiangyu, Krishnan Padmaja, Celik Kemal (2024-04)
    Enhancing Carbonation and Thermal Insulation of Reactive Magnesium Oxide Cement (RMC)-Based 3D Printable Pastes with Cenospheres
  26. Lu Bing, Wang Lining, Wang Xiangyu, Tan Ming et al. (2024-04)
    Development of Robotic Sprayable Self-Sensing Cementitious Material for Smart Structural Health Monitoring
  27. Wang Jun, Liu Zhenhua, Hou Jia, Ge Mengmeng (2024-04)
    Research-Progress and Trend-Analysis of Concrete 3D Printing Technology Based on CiteSpace
  28. Zandifaez Peyman, Shen Zhenglai, Sorgenfrei Reese, Li Yucen et al. (2024-03)
    Pathways to Formulate Lightweight and Ultra-Lightweight 3D Printable Cementitious Composites
  29. Isaac Geoff, Nicholas Paul, Paul Gavin, Pietroni Nico et al. (2024-02)
    Automated Shotcrete:
    A More Sustainable Construction Technology
  30. Liu Xiongfei, Cai Huachong, Ma Guowei, Hou Guanyu (2024-01)
    Spray-Based 3D Concrete Printing-Parameter Design-Model:
    Actionable Insight for High Printing Quality
  31. Sedghi Reza, Rashidi Kourosh, Hojati Maryam (2024-01)
    Large-Scale 3D Wall Printing:
    From Concept to Reality
  32. Khan Mehran, McNally Ciaran (2023-11)
    A Holistic Review on the Contribution of Civil Engineers for Driving Sustainable Concrete Construction in the Built Environment
  33. Lu Bing, Li Ziyang, Li Mingyang, Feng Jianhang et al. (2023-11)
    Substitution of Cement by Marine-Clay in Spray-Based 3D Concrete Printing
  34. Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
    A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
    Material-Preparation, Construction-Process and Structure-Level
  35. Tarhan Yeşim, Şahin Remzi (2023-10)
    The Physicomechanical Behavior and Microstructure of Air-Entrained 3D Printable Concrete
  36. Lu Bing, Zhao Huanyu, Li Mingyang, Wong Teck et al. (2023-10)
    MgO/Fluid Catalytic Cracking Ash-Blends for 3D Printing on Vertical Surfaces
  37. Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2023-10)
    Printability and Shape Fidelity Evaluation of Self-Reinforced Engineered Cementitious Composites
  38. Ye Junhong, Teng Fei, Yu Jie, Yu Shiwei et al. (2023-08)
    Development of 3D Printable Engineered Cementitious Composites with Incineration-Bottom-Ash for Sustainable and Digital Construction
  39. Lu Bing, Li Hongliang, Wong Teck, Qian Shunzhi (2023-08)
    Development of a Functional Cementitious Mixture with Expanded Graphite for Automated Spray Construction
  40. Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
    Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing
  41. Kilic Ugur, Ma Ji, Baharlou Ehsan, Ozbulut Osman (2023-03)
    Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites
  42. Quah Tan, Tay Yi, Lim Jian, Tan Ming et al. (2023-03)
    Concrete 3D Printing:
    Process-Parameters for Process-Control, Monitoring and Diagnosis in Automation and Construction
  43. Ma Guowei, Hu Tingyu, Wang Fang, Liu Xiongfei et al. (2023-02)
    Magnesium Phosphate Cement for Powder-Based 3D Concrete Printing:
    Systematic Evaluation and Optimization of Printability and Printing Quality
  44. Tao Yaxin, Ren Qiang, Vantyghem Gieljan, Lesage Karel et al. (2023-02)
    Extending 3D Concrete Printing to Hard Rock Tunnel Linings:
    Adhesion of Fresh Cementitious Materials for Different Surface Inclinations
  45. Vlieger Jentel, Boehme Luc, Blaakmeer Jan, Li Jiabin (2023-01)
    Buildability-Assessment of Mortar with Fine Recycled Aggregates for 3D Printing
  46. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  47. Liu Xiongfei, Li Jixiang, Li Qi, Hou Gunayu (2022-11)
    Mechanical Performance Optimization in Spray-Based Three-Dimensional-Printed Mortar Using Carbon-Fiber
  48. Teixeira João, Schaefer Cecília, Rangel Bárbara, Maia Lino et al. (2022-11)
    A Road Map to Find in 3D Printing a New Design Plasticity for Construction:
    The State of Art
  49. Lachmayer Lukas, Böhler David, Freund Niklas, Mai (née Dressler) Inka et al. (2022-11)
    Modelling the Influence of Material and Process Parameters on Shotcrete 3D Printed Strands:
    Cross-Section Adjustment for Automatic Robotic Manufacturing
  50. Lu Bing, Li Mingyang, Wong Teck, Qian Shunzhi (2022-09)
    Spray-Based 3D Concrete Printing with Calcium and Polymeric Additives:
    A Feasibility Study
  51. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  52. Araújo Rísia, Martinelli Antônio, Cabral Kleber, Dantas André et al. (2022-08)
    Thermal Performance of Cement-Leca Composites for 3D Printing
  53. Liu Xiongfei, Li Qi, Wang Fang, Ma Guowei (2022-07)
    Systematic Approach for Printability Evaluation and Mechanical Property Optimization of Spray-Based 3D Printed Mortar
  54. Li Mingyang, Zhang Xu, Tay Yi, Ting Guan et al. (2022-07)
    Three-Dimensional (3D) Printing for Building and Construction
  55. Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
    A Review of Large-Scale 3DCP:
    Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies
  56. Zhao Zhihui, Chen Mingxu, Jin Yuan, Lu Lingchao et al. (2022-05)
    Rheology-Control Towards 3D Printed Magnesium-Potassium-Phosphate-Cement Composites
  57. Biricik Öznur, Mardani Ali (2022-05)
    Parameters Affecting Thixotropic Behavior of Self-Compacting Concrete and 3D Printable Concrete:
    A State of the Art Review
  58. Zhou Ji, Hou Guanyu, Liu Xiongfei, Li Qi et al. (2022-04)
    Mechanical Properties of Spray-Based 3D Printed Micro-Cable-Reinforced Concrete
  59. Liu Siyu, Lu Bing, Li Hongliang, Pan Zehua et al. (2022-03)
    A Comparative Study on Environmental Performance of 3D Printing and Conventional Casting of Concrete Products with Industrial Wastes
  60. Zhang Yu, Qiao Hongxia, Qian Rusheng, Xue Cuizhen et al. (2022-02)
    Relationship Between Water-Transport Behavior and Inter-Layer Voids of 3D Printed Concrete
  61. Eugenin Claudia, Navarrete Iván, Brevis Wernher, Lopez Mauricio (2022-02)
    Air-Bubbles as an Admixture for Printable Concrete:
    A Review of the Rheological Effect of Entrained Air
  62. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  63. Heidarnezhad Fatemeh, Zhang Qian (2022-01)
    Shotcrete-Based 3D Concrete Printing:
    State of Art, Challenges, and Opportunities
  64. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Tittelboom Kim et al. (2021-11)
    Mechanical and Microstructural Properties of 3D Printable Concrete in the Context of the Twin-Pipe Pumping-Strategy
  65. Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
    On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing
  66. Shahzad Qamar, Shen Junyi, Naseem Rabia, Yao Yonggang et al. (2021-10)
    Influence of Phase-Change-Material on Concrete Behavior for Construction 3D Printing
  67. Wang Yu, Jiang Yaqing, Pan Tinghong, Yin Kangting (2021-08)
    The Synergistic Effect of Ester-Ether Copolymerization Thixo-Tropic Superplasticizer and Nano-Clay on the Buildability of 3D Printable Cementitious Materials
  68. Tarhan Yeşim, Şahin Remzi (2021-05)
    Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars
  69. Ning Xin, Liu Tong, Wu Chunlin, Wang Chao (2021-04)
    3D Printing in Construction:
    Current Status, Implementation Hindrances, and Development Agenda
  70. Teixeira João, Schaefer Cecília, Rangel Bárbara, Alves Jorge et al. (2021-03)
    Development of 3D Printing Sustainable Mortars Based on a Bibliometric Analysis
  71. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
    Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
    Possibilities and Challenges
  72. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
    Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials
  73. Lu Bing, Li Mingyang, Wong Teck, Qian Shunzhi (2021-02)
    Effect of Printing Parameters on Material-Distribution in Spray-Based 3D Concrete Printing (S-3DCP)
  74. Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
    Improving Performance of Additive Manufactured Concrete:
    A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods
  75. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  76. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication
  77. Chu Shaohua, Li Leo, Kwan Albert (2020-09)
    Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate
  78. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder
  79. Shahzad Qamar, Wang Xujiang, Wang Wenlong, Wan Yi et al. (2020-06)
    Coordinated Adjustment and Optimization of Setting-Time, Flowability, and Mechanical Strength for Construction 3D Printing Material Derived from Solid Waste
  80. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  81. Lu Bing, Zhu Weiping, Weng Yiwei, Liu Zhixin et al. (2020-02)
    Study of MgO-Activated-Slag as a Cementless Material for Sustainable Spray-Based 3D Printing
  82. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  83. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  84. Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
    Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing

BibTeX
@article{lu_qian_li_weng.2019.DSB3PCMwFACaAEA,
  author            = "Bing Lu and Ye Qian and Mingyang Li and Yiwei Weng and Kah Fai Leong and Ming Jen Tan and Shunzhi Qian",
  title             = "Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent",
  doi               = "10.1016/j.conbuildmat.2019.03.186",
  year              = "2019",
  journal           = "Construction and Building Materials",
  volume            = "211",
  pages             = "1073--1084",
}
Formatted Citation

B. Lu, “Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent”, Construction and Building Materials, vol. 211, pp. 1073–1084, 2019, doi: 10.1016/j.conbuildmat.2019.03.186.

Lu, Bing, Ye Qian, Mingyang Li, Yiwei Weng, Kah Fai Leong, Ming Jen Tan, and Shunzhi Qian. “Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent”. Construction and Building Materials 211 (2019): 1073–84. https://doi.org/10.1016/j.conbuildmat.2019.03.186.