Skip to content

3D-Printed Application in Concretes (2025-05)

10.1016/b978-0-443-29228-6.00020-7

 Liu Qiong,  Singh Amardeep,  Wang Qiming, Qifeng Lyu
Contribution - Multi-Material Additive Manufacturing, pp. 475-530

Abstract

As an emerging technology, 3D printing has seen rapid advancements across various industries, thanks to its high levels of intelligence, digitization, and automation, along with its capacity for sustainability and labor cost reduction. In the construction sector, 3D concrete printing technology (3DPC), also known as additive manufacturing, has garnered significant attention in recent years. This article provides a comprehensive overview of the fundamental characteristics of 3DPC, examining the roles and impacts of key components like basic cementitious materials, aggregates, mineral admixtures, fiber materials, and admixtures. It addresses the current advantages and challenges of 3DPC, particularly its buildability and extrudability, and explores main solutions such as fiber reinforcement or steel bar reinforcement. These methods aim to resolve issues like the contradiction with pumpability, poor shrinkage resistance, insufficient interlayer bonding strength, and low flexural strength. The article delves into various reinforcement methods applied to 3DPC, including short-filament fibers, steel bars, and long filament fibers, and categorizes short- and long-filament fibers into rigid and flexible fibers for a detailed analysis. A significant focus is placed on the microenvironmental changes and enhancements brought about by short-filament fibers in 3DPC, and the relationship between the bonding strength of filament fibers and the strength of 3D printing mortar. In conclusion, the article summarizes the advantages and shortcomings of these reinforcement methods, speculates on potential challenges in actual construction processes, and compares these methods with traditional construction techniques.

92 References

  1. Alghamdi Hussam, Neithalath Narayanan (2019-07)
    Synthesis and Characterization of 3D Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Aslani Farhad, Dale Ryan, Hamidi Fatemeh, Valizadeh Afsaneh (2022-05)
    Mechanical and Shrinkage Performance of 3D Printed Rubberised Engineered Cementitious Composites
  4. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  5. Bong Shin, Nematollahi Behzad, Xia Ming, Ghaffar Seyed et al. (2022-04)
    Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers
  6. Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
    Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications
  7. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  8. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  9. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi (2023-08)
    Experimental Study of the In-Situ Rebar-Splicing-Technique to Reinforce 3D Printed Concrete in Vertical Directions
  10. Cao Xiangpeng, Yu Shiheng, Wu Shuoli, Cui Hongzhi (2022-11)
    Experimental Study of Hybrid Manufacture of Printing and Cast-in-Process to Reinforce 3D Printed Concrete
  11. Cao Xiangpeng, Yu Shiheng, Zheng Dapeng, Cui Hongzhi (2022-06)
    Nail-Planting to Enhance the Interface Bonding Strength in 3D Printed Concrete
  12. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  13. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  14. Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
    Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
    Printability and Direction-Dependent Mechanical Performance
  15. Chen Yidong, Zhang Yunsheng, Zhang Yu, Pang Bo et al. (2023-08)
    Influence of Gradation on Extrusion-Based 3D Printing Concrete with Coarse Aggregate
  16. Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
    Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics
  17. Demont Léo, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2021-01)
    Flow-Based Pultrusion of Continuous Fibers for Cement-Based Composite Material and Additive Manufacturing:
    Rheological and Technological Requirements
  18. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  19. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  20. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  21. Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
    Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite
  22. Ducoulombier Nicolas, Demont Léo, Chateau Camille, Bornert Michel et al. (2020-04)
    Additive Manufacturing of Anisotropic Concrete:
    A Flow-Based Pultrusion of Continuous Fibers in a Cementitious Matrix
  23. Falliano Devid, Domenico Dario, Ricciardi Giuseppe, Gugliandolo Ernesto (2020-04)
    3D Printable Lightweight Foamed Concrete and Comparison with Classical Foamed Concrete in Terms of Fresh State Properties and Mechanical Strength
  24. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  25. Hass Lauri, Bos Freek, Salet Theo (2022-09)
    Characterizing the Bond Properties of Automatically Placed Helical Reinforcement in 3D Printed Concrete
  26. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  27. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2021-05)
    Extrusion Rheometer for 3D Concrete Printing
  28. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  29. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  30. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  31. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  32. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  33. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  34. Li Zhijian, Ma Guowei, Wang Fang, Wang Li et al. (2021-10)
    Expansive Cementitious Materials to Improve Micro-Cable-Reinforcement Bond in 3D Concrete Printing
  35. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  36. Li Zhijian, Wang Li, Ma Guowei, Sanjayan Jay et al. (2020-07)
    Strength and Ductility Enhancement of 3D Printing Structure Reinforced by Embedding Continuous Micro-Cables
  37. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  38. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  39. Liu Qiong, Cheng Shengbo, Sun Chang, Chen Kailun et al. (2023-11)
    Steel-Cable Bonding in Fresh Mortar and 3D Printed Beam Flexural Behavior
  40. Liu Miao, Huang Yimiao, Wang Fang, Sun Junbo et al. (2021-05)
    Tensile and Flexural Properties of 3D Printed Jackets-Reinforced Mortar
  41. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  42. Liu Miao, Wang Li, Ma Guowei, Li Weiwei et al. (2022-11)
    U-Type Steel-Wire-Mesh for the Flexural Performance Enhancement of 3D Printed Concrete:
    A Novel Reinforcing Approach
  43. Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
    Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete
  44. Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
    3D Printing Concrete Structures:
    State of the Art, Challenges, and Opportunities
  45. Luo Fuming, Cui Peng, Tang Wei, Wu Chun-ran et al. (2023-09)
    Influences of Engineering Spoil on the Properties and Microstructure of 3D Printable Magnesium-Cement
  46. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  47. Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
    A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing
  48. Marchment Taylor, Sanjayan Jay (2019-10)
    Mesh Reinforcing Method for 3D Concrete Printing
  49. Markin Slava, Nerella Venkatesh, Schröfl Christof, Guseynova Gyunay et al. (2019-07)
    Material-Design and Performance-Evaluation of Foam-Concrete for Digital Fabrication
  50. Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
    Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete
  51. Miranda Luiza, Marchesini Flávio, Lesage Karel, Schutter Geert (2022-12)
    The Evolution of the Rheological Behavior of Hydrating Cement Systems:
    Combining Constitutive Modeling with Rheometry, Calorimetry and Mechanical Analyses
  52. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2021-09)
    Modelling the Inter-Layer Bond Strength of 3D Printed Concrete with Surface Moisture
  53. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  54. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  55. Mollah Md., Comminal Raphaël, Silva Wilson, Šeta Berin et al. (2023-07)
    Computational Fluid Dynamics Modelling and Experimental Analysis of Reinforcement-Bar-Integration in 3D Concrete Printing
  56. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
    Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing
  57. Overmeir Anne, Figueiredo Stefan, Šavija Branko, Bos Freek et al. (2022-02)
    Design and Analyses of Printable Strain-Hardening Cementitious Composites with Optimized Particle-Size-Distribution
  58. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2023-01)
    3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste
  59. Ramakrishnan Sayanthan, Kanagasuntharam Sasitharan, Sanjayan Jay (2022-05)
    In-Line Activation of Cementitious Materials for 3D Concrete Printing
  60. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  61. Sanjayan Jay, Jayathilakage Roshan, Rajeev Pathmanathan (2020-11)
    Vibration-Induced Active Rheology-Control for 3D Concrete Printing
  62. Shahzad Qamar, Wang Xujiang, Wang Wenlong, Wan Yi et al. (2020-06)
    Coordinated Adjustment and Optimization of Setting-Time, Flowability, and Mechanical Strength for Construction 3D Printing Material Derived from Solid Waste
  63. Singh Amardeep, Chen Zhiyuan, Duan Zhenhua, Li Lei (2022-07)
    Utilization Potential of Steel-Fibers in 3D Printed Functionally Graded Cementitious Composite:
    An Experimental Approach
  64. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction
  65. Singh Amardeep, Wang Yufei, Zhou Yiyi, Sun Junbo et al. (2023-10)
    Utilization of Antimony-Tailings in Fiber-Reinforced 3D Printed Concrete:
    A Sustainable Approach for Construction Materials
  66. Sun Xiaoyan, Gao Chao, Wang Hailong (2020-10)
    Bond-Performance Between BFRP-Bars and 3D Printed Concrete
  67. Sun Bochao, Li Peichen, Wang Dianchao, Ye Jun et al. (2023-03)
    Evaluation of Mechanical Properties and Anisotropy of 3D Printed Concrete at Different Temperatures
  68. Tao Yaxin, Mohan Manu, Rahul Attupurathu, Schutter Geert et al. (2023-02)
    Development of a Calcium Sulfoaluminate-Portland Cement Binary System for Twin-Pipe 3D Concrete Printing
  69. Tao Yaxin, Mohan Manu, Rahul Attupurathu, Schutter Geert et al. (2023-10)
    Influence of Rheology on Mixing Homogeneity and Mechanical Behavior of Twin-Pipe 3D Printable Concrete
  70. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
    Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
    Possibilities and Challenges
  71. Tao Yaxin, Rahul Attupurathu, Mohan Manu, Tittelboom Kim et al. (2022-09)
    Blending Performance of Helical Static Mixer Used for Twin-Pipe 3D Concrete Printing
  72. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  73. Wang Zhibin, Jia Lutao, Deng Zhicong, Zhang Chao et al. (2022-08)
    Bond Behavior Between Steel-Bars and 3D Printed Concrete:
    Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating
  74. Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
    Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails
  75. Wang Li, Xiao Wei, Wang Qiao, Jiang Hailong et al. (2022-07)
    Freeze-Thaw-Resistance of 3D Printed Composites with Desert Sand
  76. Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
    Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process
  77. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  78. Xiao Jianzhuang, Chen Zixuan, Ding Tao, Zou Shuai (2021-10)
    Bending Behavior of Steel-Cable-Reinforced 3D Printed Concrete in the Direction Perpendicular to the Interfaces
  79. Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
    Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures
  80. Xiao Jianzhuang, Hou Shaodan, Duan Zhenhua, Zou Shuai (2023-01)
    Rheology of 3D Printable Concrete Prepared by Secondary Mixing of Ready-Mix Concrete
  81. Yang Yekai, Wu Chengqing, Liu Zhongxian (2023-01)
    Rate-Dependent Behavior of 3D Printed Ultra-High-Performance Fiber-Reinforced Concrete Under Dynamic Splitting Tensile
  82. Yao Hao, Xie Zonglin, Li Zemin, Huang Chuhan et al. (2021-11)
    The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite
  83. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  84. Yin Yunchao, Huang Jian, Wang Tiezhu, Yang Rong et al. (2023-09)
    Effect of Hydroxypropyl-Methylcellulose on Rheology and Printability of the First Printed Layer of Cement Activated Slag-Based 3D Printing Concrete
  85. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  86. Zeng Jun-Jie, Li Pei-Lin, Yan Zitong, Zhou Jie-Kai et al. (2023-08)
    Behavior of 3D Printed HPC Plates with FRP-Grid-Reinforcement Under Bending
  87. Zhang Yifan, Aslani Farhad (2021-08)
    Development of Fiber-Reinforced Engineered Cementitious Composite Using Polyvinyl-Alcohol-Fiber and Activated Carbon-Powder for 3D Concrete Printing
  88. Zhang Hanghua, Xiao Jianzhuang (2021-08)
    Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand
  89. Zhang Yi, Zhu Yanmei, Ren Qiang, He Bei et al. (2023-08)
    Comparison of Printability and Mechanical Properties of Rigid and Flexible Fiber-Reinforced 3D Printed Cement-Based Materials
  90. Zhou Yiyi, Jiang Dan, Sharma Rahul, Xie Yi et al. (2022-11)
    Enhancement of 3D Printed Cementitious Composite by Short Fibers:
    A Review
  91. Zhou Yiyi, Luo Haoran, Anand Kamal, Singh Amardeep et al. (2024-02)
    Sustainable Use of Ultrafine Recycled Glass in Additive Manufactured Reactive-Powder Concrete
  92. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D

0 Citations

BibTeX
@inproceedings{liu_sing_wang_qife.2025.3PAiC,
  author            = "Qiong Liu and Amardeep Singh and Qiming Wang and Lyu Qifeng",
  title             = "3D-Printed Application in Concretes",
  doi               = "10.1016/b978-0-443-29228-6.00020-7",
  year              = "2025",
  pages             = "475--530",
  booktitle         = "Multi-Material Additive Manufacturing",
}
Formatted Citation

Q. Liu, A. Singh, Q. Wang and L. Qifeng, “3D-Printed Application in Concretes”, in Multi-Material Additive Manufacturing, 2025, pp. 475–530. doi: 10.1016/b978-0-443-29228-6.00020-7.

Liu, Qiong, Amardeep Singh, Qiming Wang, and Lyu Qifeng. “3D-Printed Application in Concretes”. In Multi-Material Additive Manufacturing, 475–530, 2025. https://doi.org/10.1016/b978-0-443-29228-6.00020-7.