Skip to content

#fresh

Keywords by Co - Occurrence

  1. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud (2026-01)
    Effect of Fly Ash, Basalt Fiber and Attapulgite Nanoclay on the Fresh Properties, Rheology and Shrinkage Behaviour of Printable Concrete
  2. Talukdar A., Belek Fialho Teixeira Müge, Fawzia Sabrina, Zahra Tatheer et al. (2026-01)
    Investigation on the Fresh and Mechanical Properties of Low Carbon 3D Printed Concrete Incorporating Sugarcane Bagasse Ash and Microfibers
  3. Hasan Md, Xu Jie, Uddin Md (2025-11)
    A Critical Review of 3D Printed Fiber-Based Geopolymer Concrete:
    Fresh Properties, Mechanical Performance, and Current Limitations
  4. Sun Yan, Du Guoqiang, Mudasir Maryam (2025-11)
    Rheological Investigations of Fresh Fiber-Reinforced Cementitious Composites Using Hydrophobic / Hydrophilic UHMWPE Fibers for 3D Concrete Printing Evaluation
  5. Khalid Lawand, Mermerdaş Kasım, Ekmen Şevin, Khidhir Bzeni Dillshad (2025-11)
    Optimization of Fresh and Hardened Properties of Fiber-Reinforced 3D Printed Geopolymer Composites Using Response Surface Methodology:
    A Data-Driven Approach Based on Prior Experimental Studies
  6. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  7. Sakolaree Natthanicha, Taweesint Jutamas, Sungsiri Krisana, Assawamankongcharoen Sirikamol et al. (2025-11)
    Evaluation of Fresh and Mechanical Properties and Shrinkage of Hydrophobic Mortar Containing Microfiber for 3D Printing Technology
  8. Hasani Alireza, Dorafshan Sattar (2025-11)
    Evaluation of Fresh, Hardened, and Durability Properties of Three-Dimensional Concrete Printed Pipes
  9. Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
    Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures
  10. Lale Erol, Ayhan Bahar, Ahmed Ayesha, Irizarry Elmer et al. (2025-10)
    Computational Simulations Fresh-to-Solid Transition for Additive Manufacturing of Ultra-High-Performance Fiber Reinforced Concrete
  11. Lange David, Shen Chuanyue (2025-10)
    Modeling the Fresh Properties of Cement-Based Materials for 3D Concrete Printing
  12. Ingle Vaibhav, Prem Prabhat (2025-07)
    Acoustic Emission Examination of 3D Printed Ultra-High Performance Concrete with and Without Coarse Aggregate Under Fresh and Hardened States
  13. Kellnerová Vendula, David Tomáš, Reiterman Pavel (2025-07)
    Modification of Properties of Fresh Mixture for 3D Printing Using Cement-Based Mortar
  14. Tinoco Matheus, Toledo Filho Romildo, Mendoza Reales Oscar (2025-06)
    Rice Husk Bio-Aggregates for 3D Printing in Construction:
    Balancing Fresh and Hardened Properties
  15. Tinoco Matheus, Márquez Álvaro, Ramallo Laura, Barluenga Gonzalo et al. (2025-06)
    Fresh and Hardened Properties of Cellulose Fiber-Reinforced Mortars for 3D Printing in Construction
  16. Kumar Sandeep, Kumar Abhishek, Pundir Aakanksha, Dwivedi Ashutosh et al. (2025-06)
    Low-Clay Soil as Fine Aggregate in 3D Printed Concrete:
    Insights into Fresh and Hardened Properties
  17. Nieświec Martyna, Chajec Adrian, Šavija Branko (2025-05)
    Effect of Ground Copper Slag on the Fresh Properties of 3d Printed Cementitious Composites
  18. Over Derya, Ozbakan Nesil (2025-04)
    Effect of Recycled Aggregate Use on the Fresh State Properties of Limestone Calcined Clay Cement (LC3) Mortars
  19. Nieświec Martyna, Chajec Adrian (2025-03)
    Effect of Materials on the Properties of Fresh Cementitious Composites for 3D Printing:
    Short Review
  20. Koszela Kamila, Chajec Adrian (2025-03)
    Sustainable Additive Manufacturing:
    How the Composition of the Cementitious Mix Influences Its Fresh Properties
  21. Abudawaba Fareh, Gomaa Eslam, Gheni Ahmed, Feys Dimitri et al. (2025-03)
    Evaluation of Fresh Properties of High Calcium Content Fly Ash-Based Alkali-Activated 3D-Printed Mortar
  22. Nasr Ahmed, Duan Zhenhua, Singh Amardeep, Deng Qi et al. (2025-02)
    Fresh Properties and Rheological Behavior of 3D-Printed Cementitious Composites Incorporating Recycled PVC and Nylon Fibers:
    An Experimental Approach
  23. Shen Qiang, Sun Dongpu, Lu Chenyu, Zhang Zhigang et al. (2025-02)
    Fresh and Anisotropic-Mechanical Properties of Polyoxymethylene Fibers Reinforced 3D Printable Cementitious Composites
  24. Elango K., Saravanakumar R., Vivek D., Yuvaraj S. et al. (2025-01)
    A Critical Review of Fresh, Hardened and Durability Properties of 3D Printing Concrete
  25. Şahin Hatice, Akarsu Özenç Aliye, Saka Dinç Zaide, Mardani Ali et al. (2024-11)
    Investigation of Fresh and Hardened Properties of 3D Printable Concrete Containing Ozone-Modified Carbon-Fiber
  26. Rasel Risul, Hossain Md, Zubayer Md, Zhang Chaoqun (2024-11)
    Exploring the Fresh and Rheology Properties of 3D Printed Concrete with Fiber-Reinforced Composites:
    A Novel Approach Using Machine Learning Techniques
  27. Ge Yali, Yao Jie (2024-11)
    Influence of FA and HPMC on the Fresh Properties and Anisotropy of 3D Printing Engineered Cementitious Composites
  28. Kaya Ebru, Ciza Baraka, Yalçınkaya Çağlar, Felekoğlu Burak et al. (2024-11)
    Effect of Hydroxypropyl-Methylcellulose and Aggregate Volume on Fresh and Hardened Properties of 3D Printable Concrete
  29. Bang Jin, Yim Hong (2024-10)
    Unbonded Inter-Layer Evaluation in Freshly 3D Printed Concrete Using Electrical Resistivity Measurements
  30. Althoey Fadi, Zaid Osama, Ahmed Bilal, Elhadi Khaled (2024-10)
    Impact of Double Hooked Steel-Fibers and Nano-Kaolin-Clay on Fresh Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete
  31. Chajec Adrian, Šavija Branko (2024-09)
    The Effect of Using Surface Functionalized Granite-Powder-Waste on Fresh Properties of 3D Printed Cementitious Composites
  32. Ivaniuk Egor, Reißig Silvia, Mechtcherine Viktor (2024-09)
    Automating Penetration Tests for Fresh 3D Printed Cementitious Materials
  33. Negron-McFarlane Christian, Kreiger Eric, Kreiger Megan (2024-09)
    Determination of Print Speed Based on the Fresh Mechanical Strength over Time of Additively Constructed Concrete by Unconfined Compression
  34. Jacquet Yohan, Maierdan Yierfan, Kawashima Shiho, Perrot Arnaud (2024-09)
    Stability-Prediction of 3D Printable Fresh Construction Materials by Analyzing Thixotropic Compressive Properties Using Extensional Dynamic Mechanical Analysis
  35. Zuo Wenqiang, Caneda-Martínez Laura, Keita Emmanuel, Aimedieu Patrick et al. (2024-08)
    Drying-Induced Damages in Exposed Fresh Cement-Based Materials at Very Early-Ages:
    From Standard Casting to 3D Printing
  36. Luo Qiling, Yu Ke-Ke, Long Wujian, Zheng Shuyi et al. (2024-07)
    Influence of Different Types of Superabsorbent Polymers on Fresh Mechanical Properties and Inter-Layer Adhesion of 3D Printed Concrete
  37. Li Bingying, Ding Tao, Qu Changwei, Liu Wei (2024-07)
    Modification of Fresh and Hardened Properties of 3D Printed Recycled Mortar by Superabsorbent Polymers
  38. Yan Kang-Tai, Wang Xian-Peng, Ding Yao, Li Lingzhi et al. (2024-06)
    3D Printed LC3-Based Lightweight Engineered Cementitious Composites:
    Fresh State, Hardened Material-Properties and Beam-Performance
  39. Razzaghian Ghadikolaee Mehrdad, Pan Zhu, Cerro-Prada Elena, Korayem Asghar (2024-06)
    Fresh and Hardened Properties of 3D Printing Mortar Modified by Halloysite-Nanotube
  40. Matos Paulo, Prigol Hellen, Schackow Adilson, Silva Nazário Samara et al. (2024-06)
    Quality-Control-Tests of Fresh 3D Printable Cement-Based Materials
  41. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites
  42. Soda Prabhath, Dwivedi Ashutosh, Sahana C., Gupta Souradeep (2024-03)
    Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil:
    Evaluation of Fresh and Hardened Properties
  43. Dams Barrie, Chen Binling, Kaya Yusuf, Orr Lachlan et al. (2024-03)
    Fresh Properties and Autonomous Deposition of Pseudoplastic Cementitious Mortars for Aerial Additive Manufacturing
  44. Kaliyavaradhan Senthil, Ambily Parukutty, Shekar Deepadharshan, Sebastian Shilpa (2024-02)
    Effect of Sand-Gradations on the Fresh Properties of 3D Printable Concrete
  45. Ding Tao, Shen Kaige, Cai Chen, Xiao Jianzhuang et al. (2024-02)
    3D Printed Concrete with Sewage Sludge Ash:
    Fresh and Hardened Properties
  46. Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
    Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders
  47. Dulaj Albanela, Salet Theo, Lucas Sandra (2024-01)
    A Study of the Effects of MWCNTs on the Fresh and Hardened State Properties of 3D Printable Concrete
  48. Liu Qiong, Cheng Shengbo, Sun Chang, Chen Kailun et al. (2023-11)
    Steel-Cable Bonding in Fresh Mortar and 3D Printed Beam Flexural Behavior
  49. Wang Yu, Rodriguez Fabian, Olek Jan, Zavattieri Pablo et al. (2023-11)
    Influence of Type of Fibers on Fresh and Hardened Properties of Three-Dimensional-Printed Cementitious Mortars
  50. Sedghi Reza, Zafar Muhammad, Hojati Maryam (2023-10)
    Exploring Fresh and Hardened Properties of Sustainable 3D Printed Lightweight Cementitious Mixtures
  51. Ingle Vaibhav, Kaliyavaradhan Senthil, Ambily Parukutty, Shekar Deepadharshan (2023-09)
    3D Printable Concrete Without Chemical Admixtures:
    Fresh and Hardened Properties
  52. Liu Zhenbang, Li Mingyang, Quah Tan, Wong Teck et al. (2023-09)
    Comprehensive Investigations on the Relationship Between the 3D Concrete Printing Failure Criterion and Properties of Fresh-State Cementitious Materials
  53. Ji Xuping, Pan Tinghong, Liu Xingyao, Zhao Wenhao et al. (2023-09)
    Characterization of Thixotropic Properties of Fresh Cement‐Based Materials
  54. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-08)
    3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC):
    Tailoring Fresh and Hardened State Properties
  55. Li Mingyang, Liu Zhixin, Ho Jin, Wong Teck (2023-08)
    Experimental Investigation of Fresh and Time-Dependent Rheological Properties of 3D Printed Cementitious Material
  56. Matos Paulo, Zat Tuani, Lima Marcelo, Neto José et al. (2023-08)
    Effect of the Superplasticizer-Addition Time on the Fresh Properties of 3D Printed Limestone-Calcined-Clay-Cement (LC³) Concrete
  57. Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2023-08)
    Slag-Modified Fiber-Reinforced Metakaolin-Based Geopolymer for 3D Concrete Printing Application:
    Evaluating Fresh and Hardened Properties
  58. Kanyenze Simba, Joubert Dawid, Combrinck Riaan (2023-07)
    The Effect of Nanobubble Water on the Fresh Properties of Conventional Concrete and 3D Printing Concrete
  59. Schönsee Eric, Hüsken Götz, Jeyifous Olubunmi, Mezhov Alexander et al. (2023-06)
    Calculating Rheological Properties of Fresh Mortar for Additive Manufacturing Based on Experimental, Multi-Sensor Data
  60. Rahmat N., Ali Noorwirdawati, Abdullah Siti, Abdul Hamid Noor et al. (2023-06)
    Fresh Properties and Flexural Strength of 3D Printing Sustainable Concrete Containing GGBS as Partial Cement Replacement
  61. Ramezani Amir, Modaresi Shahriar, Dashti Pooria, Givkashi Mohammad et al. (2023-04)
    Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures:
    A Review
  62. Ibrahim Kamoru, Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2023-03)
    Influence of Effective Micro-Organisms on the Rheology and Fresh State Properties of SCMs-Based Concrete for Digital Fabrication
  63. Kilic Ugur, Ma Ji, Baharlou Ehsan, Ozbulut Osman (2023-03)
    Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites
  64. Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei (2023-02)
    Effects of the Distribution of Solid Particles on the Rheological Properties and Buildability of 3DPM Fresh Pastes with Different FA/GGBFS Content
  65. Tao Yaxin, Ren Qiang, Vantyghem Gieljan, Lesage Karel et al. (2023-02)
    Extending 3D Concrete Printing to Hard Rock Tunnel Linings:
    Adhesion of Fresh Cementitious Materials for Different Surface Inclinations
  66. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites
  67. D'Haese Romain, Carpentier Olivier, Dubois Vincent, Chafei Sawsen et al. (2022-10)
    3D Printable Materials Made with Industrial Byproducts:
    Formulation, Fresh and Hardened Properties
  68. Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-10)
    The Fresh and Hardened Properties of 3D Printing Cement-Base Materials with Self-Cleaning Nano-TiO2:
    An Exploratory Study
  69. Liu Chao, Chen Yuning, Zhang Zedi, Niu Geng et al. (2022-10)
    Study of the Influence of Sand on Rheological Properties, Bubble Features and Buildability of Fresh Foamed Concrete for 3D Printing
  70. Spuriņa Ella, Šinka Māris, Ziemelis Krists, Vanags Andris et al. (2022-09)
    The Effects of Air-Entraining Agent on Fresh and Hardened Properties of 3D Concrete
  71. Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2022-09)
    Fresh Properties and Strength Evolution of Slag-Modified Fiber-Reinforced Metakaolin-Based Geopolymer Composite for 3D Concrete Printing Application
  72. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud et al. (2022-08)
    Investigation of Fresh Properties of 3D Concrete Printing Containing Nano-Clay in Forms of Suspension and Powder
  73. Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
    Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite
  74. Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
    Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
    On the Evaluation of Buildability
  75. Diab Zeinab, Do Duc, Rémond Sébastien, Hoxha Dashnor (2022-06)
    Uncertainty Quantification of Concrete Properties at Fresh State and Stability-Analysis of the 3D Printing Process by Stochastic Approach
  76. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2022-06)
    Fresh and Hardened Properties of 3D Printable Foam-Concrete Containing Porous Aggregates
  77. Kolawole John, Becker Daniel, Xu Jie, Dobrzanski James et al. (2022-06)
    Selected Test-Methods for Assessing Fresh and Plastic-State 3D Concrete Printing-Materials
  78. Roussel Nicolas, Buswell Richard, Ducoulombier Nicolas, Ivanova Irina et al. (2022-06)
    Assessing the Fresh Properties of Printable Cement-Based Materials:
    High-Potential Tests for Quality-Control
  79. Matos Paulo, Zat Tuani, Corazza Kiara, Fensterseifer Emilia et al. (2022-05)
    Effect of TiO2 Nano-Particles on the Fresh Performance of 3D Printed Cementitious Materials
  80. Klyuev Sergey, Klyuev Alexander, Fediuk Roman, Ageeva Marina et al. (2022-04)
    Fresh and Mechanical Properties of Low-Cement Mortars for 3D Printing
  81. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  82. Gimenez-Carbo Ester, Torres Raquel, Coll Hugo, Roig-Flores Marta et al. (2022-04)
    Preliminary Study of the Fresh and Hard Properties of UHPC That Is Used to Produce 3D Printed Mortar
  83. Bhattacherjee Shantanu, Santhanam Manu (2022-04)
    Investigation on the Effect of Alkali-Free Aluminium Sulfate-Based Accelerator on the Fresh Properties of 3D Printable Concrete
  84. Teixeira João, Schaefer Cecília, Maia Lino, Rangel Bárbara et al. (2022-03)
    Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials
  85. Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
    Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
  86. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud et al. (2022-02)
    Influence of Nano-Clay on the Fresh and Rheological Behavior of 3D Printing Mortar
  87. Wangler Timothy, Flatt Robert, Roussel Nicolas, Perrot Arnaud et al. (2022-01)
    Printable Cement-Based Materials:
    Fresh Properties Measurements and Control
  88. Liu Chao, Xiong Yuanliang, Chen Yuning, Jia Lutao et al. (2022-01)
    Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete
  89. Xiao Qiyuan, Long Guangcheng, Feng Ruiping, Zeng Xiaohui et al. (2021-12)
    Effect of Alternating Current Field on Rheology of Fresh Cement-Based-Pastes
  90. Xu Zhisong, Li Zhuguo, Jiang Fei (2021-11)
    Numerical Approach to Pipe Flow of Fresh Concrete Based on MPS Method
  91. Ramyar Elham, Cusatis Gianluca (2021-11)
    Discrete Fresh Concrete-Model for Simulation of Ordinary, Self-Consolidating, and Printable Concrete-Flow
  92. Pham Luong, Panda Biranchi, Tran Jonathan (2021-11)
    Fresh and Hardened Properties of 3D Printable Polymer-Fiber-Reinforced High-Performance Cementitious Composite
  93. Sonebi Mohammed, Dedenis Marie, Abdalqader Ahmed, Perrot Arnaud (2021-11)
    Effect of Red Mud, Nano-Clay, and Natural Fiber on Fresh and Rheological Properties of Three-Dimensional Concrete Printing
  94. Jacquet Yohan, Picandet Vincent, Perrot Arnaud (2021-11)
    Characterization of Tensile Behavior of Fresh Cementitious Materials
  95. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  96. Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2021-09)
    Particle-Finite-Element-Simulation of Extrusion-Processes of Fresh Concrete During 3D Concrete Printing
  97. Som Debadri, Zanotti Cristina (2021-09)
    Effect of Nano-Additives and Polymeric Viscosity-Modifying-Admixtures (VMA) on the Fresh and Hardened Properties of 3D Printable Concrete Mixtures
  98. Shen Wenkai, Shi Caijun, Khayat Kamal, Yuan Qiang et al. (2021-06)
    Change in Fresh Properties of High-Strength Concrete Due to Pumping
  99. Jenkins Morgan, Brand Alexander (2021-05)
    Aggregate Moisture-Content and Fresh Property-Control-Measures in Cementitious Mortars
  100. Tarhan Yeşim, Şahin Remzi (2021-05)
    Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars
  101. Ghourchian Sadegh, Butler Marko, Krüger Markus, Mechtcherine Viktor (2021-04)
    Modelling the Development of Capillary Pressure in Freshly 3D Printed Concrete Elements
  102. Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
    Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars
  103. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  104. Canou Joseph, Uhart Maylis, Diaz Pierre (2021-02)
    A “Low-Cost” Subtractive Method for Freshly Finished 3D Concrete Printed Structures
  105. Sikora Paweł, Chung Sang-Yeop, Liard Maxime, Lootens Didier et al. (2021-02)
    The Effects of Nano-Silica on the Fresh and Hardened Properties of 3D Printable Mortars
  106. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  107. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  108. Dedenis Marie, Sonebi Mohammed, Amziane Sofiane, Perrot Arnaud et al. (2020-07)
    Effect of Metakaolin, Fly-Ash and Polypropylene-Fibers on Fresh and Rheological Properties of 3D Printing Based Cement Materials
  109. Jacquet Yohan, Picandet Vincent, Rangeard Damien, Perrot Arnaud (2020-07)
    Gravity-Driven Tests to Assess Mechanical Properties of Printable Cement-Based Materials at Fresh State
  110. Tao Yaxin, Lesage Karel, Tittelboom Kim, Yuan Yong et al. (2020-07)
    Effect of Limestone-Powder Substitution on Fresh and Hardened Properties of 3D Printable Mortar
  111. Hassan Hilal, Najjar Fady, Jassmi Hamad, Ahmed Waleed (2020-07)
    Fresh and Hardened Properties of 3D Printed Concrete Made with Dune Sand
  112. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  113. Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
    Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing
  114. Falliano Devid, Domenico Dario, Ricciardi Giuseppe, Gugliandolo Ernesto (2020-04)
    3D Printable Lightweight Foamed Concrete and Comparison with Classical Foamed Concrete in Terms of Fresh State Properties and Mechanical Strength
  115. Ivanova Irina, Mechtcherine Viktor (2020-03)
    Effects of Volume Fraction and Surface Area of Aggregates on the Static Yield-Stress and Structural Build-Up of Fresh Concrete
  116. Özalp Fatih, Yılmaz Halit (2020-03)
    Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications
  117. Sun Xiaoyan, Wang Qun, Wang Hailong, Chen Long (2020-03)
    Influence of Multi-Walled Nanotubes on the Fresh and Hardened Properties of a 3D Printing PVA Mortar Ink
  118. Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-01)
    The Effect of Accelerator Dosage on Fresh Concrete Properties and on Inter-Layer Strength in Shotcrete 3D Printing
  119. Ma Guowei, Li Yanfeng, Wang Li, Zhang Junfei et al. (2020-01)
    Real-Time Quantification of Fresh and Hardened Mechanical Property for 3D Printing Material by Intellectualization with Piezoelectric Transducers
  120. Shah Surendra, Kim Jae (2019-09)
    Rheology of Fresh Concrete:
    Historical Perspective and Glance in the Future
  121. Roussel Nicolas, Bessaies-Bey Hela, Kawashima Shiho, Marchon Delphine et al. (2019-08)
    Recent Advances on Yield-Stress and Elasticity of Fresh Cement-Based Materials
  122. Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
    A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar
  123. Yeon Kyu-Seok, Kim Kwan, Yeon Jaeheum, Lee Hee (2019-07)
    Fresh Properties of EVA-Modified Cementitious Mixtures for Use in Additive Construction by Extrusion
  124. Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
    The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete
  125. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  126. Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman et al. (2019-01)
    Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing
  127. Mechtcherine Viktor, Nerella Venkatesh (2018-10)
    3D-Concrete-Printing by Selective Deposition:
    Requirements for Fresh Concrete and Testing
  128. Reinold Janis, Meschke Günther (2018-10)
    Particle-Finite-Element-Simulation of Fresh Concrete for 3D Printing Applications
  129. Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2018-09)
    Fresh and Hardened Properties of 3D Printable Geopolymer Cured in Ambient Temperature
  130. Kazemian Ali, Yuan Xiao, Meier Ryan, Khoshnevis Behrokh (2018-09)
    A Framework for Performance-Based Testing of Fresh Mixtures for Construction-Scale 3D Printing
  131. Qian Ye, Schutter Geert (2018-06)
    Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE)
  132. Liu Zhixin, Li Mingyang, Wong Teck, Tan Ming (2018-05)
    Measurement of the Fresh Rheological Properties of Material in 3D Printing
  133. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  134. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  135. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  136. Kazemian Ali, Yuan Xiao, Meier Ryan, Cochran Evan et al. (2017-06)
    Construction-Scale 3D Printing:
    Shape Stability of Fresh Printing Concrete
  137. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  138. Schutter Geert, Feys Dimitri (2016-11)
    Pumping of Fresh Concrete:
    Insights and Challenges
  139. Qian Ye, Kawashima Shiho (2016-09)
    Use of Creep Recovery Protocol to Measure Static Yield-Stress and Structural Rebuilding of Fresh Cement-Pastes
  140. Choi Myoungsung, Park Kyoungsoo, Oh Taekeun (2016-06)
    Viscoelastic Properties of Fresh Cement-Paste to Study the Flow Behavior
  141. Bessaies-Bey Hela, Baumann Robert, Schmitz Marc, Radler Michael et al. (2015-05)
    Effect of Polyacrylamide on Rheology of Fresh Cement-Pastes
  142. Mechtcherine Viktor, Gram Annika, Krenzer Knut, Schwabe Jörg-Henry et al. (2014-03)
    Simulation of Fresh Concrete Flow Using Discrete Element Method (DEM)
  143. Roussel Nicolas, Gram Annika (2014-03)
    Physical Phenomena Involved in Flows of Fresh Cementitious Materials
  144. Carlo Tony, Khoshnevis Behrokh, Chen Yong (2013-11)
    Manufacturing Additively, with Fresh Concrete
  145. Zhou Xiangming, Li Zongjin, Fan Mizi, Chen Huapeng (2013-01)
    Rheology of Semi-Solid Fresh Cement-Pastes and Mortars in Orifice-Extrusion
  146. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  147. Deng Shou-chang, Zhang Xue-bing, Qin Ying-hui, Luo Guan-xiang (2007-02)
    Rheological Characteristic of Cement Clean Paste and Flowing Behavior of Fresh Mixing Concrete with Pumping in Pipeline