Skip to content

Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder (2020-07)

10.1016/j.cemconres.2020.106169

 Yu Shiwei,  Du Hongjian,  Sanjayan Jay
Journal Article - Cement and Concrete Research, Vol. 136

Abstract

3D concrete printing (3DCP) is an emerging construction method, which has the potential to revolutionize the building industry by enabling construction automation. This paper presents a feasible concrete printing process, where cement-based filament is extruded onto aggregates bed to form layer-by-layer structures. Distinct from extrusion-based concrete printing, coarse aggregates are incorporated in the printing process and serve as the supporting material. A prototype printer has been successfully developed and aggregate content could reach about 40% in the printed concrete. Furthermore, the printed structures gained compressive strength up to 48.9 MPa and flexural strength up to 7.5 MPa at 28 days, which satisfies the general engineering requirement. Besides, an apparent mechanical anisotropy was found in printed structures and the reason of this anisotropy is the voids formed around aggregate layers and the weak interfacial transition zone located between aggregate and paste.

23 References

  1. Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
    Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Gibbons Gregory, Williams Reuben, Purnell Phil, Farahi Elham (2013-07)
    3D Printing of Cement Composites
  4. Ji Guangchao, Ding Tao, Xiao Jianzhuang, Du Shupeng et al. (2019-05)
    A 3D Printed Ready-Mixed Concrete Power-Distribution Substation:
    Materials and Construction Technology
  5. Kloft Harald, Krauss Hans-Werner, Hack Norman, Herrmann Eric et al. (2020-05)
    Influence of Process Parameters on the Inter-Layer Bond Strength of Concrete Elements Additive Manufactured by Shotcrete 3D Printing
  6. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  7. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  8. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  9. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  10. Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
    Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent
  11. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  12. Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-01)
    The Effect of Accelerator Dosage on Fresh Concrete Properties and on Inter-Layer Strength in Shotcrete 3D Printing
  13. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  14. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  15. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  16. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  17. Pierre Alexandre, Weger Daniel, Perrot Arnaud, Lowke Dirk (2018-01)
    Penetration of Cement-Pastes into Sand-Packings During 3D Printing:
    Analytical and Experimental Study
  18. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  19. Tian Wei, Han Nv (2018-04)
    Pore Characteristics (>0.1mm) Of Non-Air-Entrained Concrete Destroyed by Freeze-Thaw-Cycles Based on CT Scanning and 3D Printing
  20. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  21. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  22. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  23. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

78 Citations

  1. Nguyen Vuong, Jie Cheah, Lao Junying, Huanyu Zhao et al. (2026-01)
    Performance of Lightweight, Reinforced, and Assemblable 3D-Printed Concrete Columns with Low-Carbon Engineered Cementitious Composites
  2. Koneswaran Bahirathan, Rajeev Pathmanathan, Sanjayan Jay (2025-12)
    3D Concrete-Printed Geocell for Reinforcing Unbound Granular Pavement Layers
  3. Subramaniam Kolluru, Maganty Sohanth, Kamakshi Tippabhotla, Ghandhi Dhruv et al. (2025-12)
    Design and Deployment of a Functionally Efficient 3D-Printed Concrete Bridge Developed by Form Optimization
  4. Niu Huaxian, Yu Bo, Hao Ji (2025-10)
    CFD-Based Flow Field Analysis of Spiral Nozzles in 3D Concrete Printing
  5. Zhang Nan, Sanjayan Jay (2025-08)
    Concrete 3D Printing and Digital Fabrication Technologies for Bridge Construction
  6. Ali Syed, Haq Mohd, Khan Rizwan, Hashmi Ahmad (2025-07)
    A Comprehensive Review on 3D Printing of Concrete:
    Materials, Methods and Mechanical Properties
  7. Yuan Yong, Sheng Ruyi, Yao Xupeng, Pichler Bernhard et al. (2025-03)
    A Three-Step Development Strategy for 3D Printable Concrete Containing Coarse Aggregates
  8. Duan Zhenhua, Tao Jie-Lin, Lin Can, Jiao Dengwu et al. (2025-02)
    3D Printing-Driven Dynamic Migration of Lightweight Microspheres in the Printable Mortars:
    Experiment and Modelling
  9. Nadi Mouad, Majdoubi Hicham, Haddaji Younesse, Bili Oumaima et al. (2025-01)
    Digital Fabrication Processes for Cementitious Materials Using Three-Dimensional 3D Printing Technologies
  10. Lyu Qifeng, Wang Yalun, Chen Dongjian, Liu Shiyuan et al. (2025-01)
    Energy Storage Properties and Mechanical Strengths of 3D Printed Porous Concrete Structural Supercapacitors Reinforced by Electrodes Made of Carbon-Black-Coated Ni Foam
  11. Wang Hailong, Shen Junyi, Sun Xiaoyan, Dong Weiwei et al. (2024-12)
    Numerical Investigation on Shear Behavior of Reinforced Concrete Beam with 3D Printed Concrete Permanent Formwork
  12. Liu Huawei, Wang Yifei, Zhu Chao, Wu Yiwen et al. (2024-11)
    Design of 3D Printed Concrete Masonry for Wall Structures:
    Mechanical Behavior and Strength Calculation Methods Under Various Loads
  13. Wang Lingyu, Zhang Yu, Wang Zhiyong, Chen Juan et al. (2024-11)
    Additive Manufacturing in Construction Using Unmanned Aerial Vehicle:
    Design, Implementation, and Material-Properties
  14. Chen Yidong, Zhang Yunsheng, Quan Hongzhu, Liu Cheng et al. (2024-10)
    Early-Age Time-Dependent Mechanical Properties of 3D Printed Concrete with Coarse Aggregates
  15. Fernand Muhirwa, Li Yaqi, Qian Qiwei, Chi Yin et al. (2024-08)
    Effects of Coarse Aggregates on 3D Printability and Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete
  16. Rehman Saif, Riaz Raja, Usman Muhammad, Kim In-Ho (2024-08)
    Augmented Data-Driven Approach Towards 3D Printed Concrete Mix Prediction
  17. Aghaee Kamran, Li Linfei, Roshan Alireza, Namakiaraghi Parsa (2024-08)
    Additive Manufacturing Evolution in Construction:
    From Individual Terrestrial to Collective, Aerial, and Extraterrestrial Applications
  18. Lu Bing, Li Mingyang, Qian Shunzhi, Li King et al. (2024-07)
    High-Performance 3D Concrete Printing with Zeolite
  19. An Dong, Zhang Yixia, Yang Chunhui (2024-05)
    Incorporating Coarse Aggregates into 3D Concrete Printing from Mixture Design and Process-Control to Structural Behavior and Practical Applications:
    A Review
  20. Lyu Qifeng, Wang Yalun, Dai Pengfei (2024-05)
    Multilayered Plant-Growing Concrete Manufactured by Aggregate-Bed 3D Concrete Printing
  21. Wei Ying, Han Song, Yu Shiwei, Chen Ziwei et al. (2024-05)
    Parameter Impact on 3D Concrete Printing from Single to Multi-Layer Stacking
  22. Du Song, Teng Fei, Zhuang Zicheng, Zhang Dong et al. (2024-04)
    A BIM-Enabled Robot-Control System for Automated Integration Between Rebar-Reinforcement and 3D Concrete Printing
  23. Wei Ying, Han Song, Chen Ziwei, Lu Jianxian et al. (2024-04)
    Numerical Simulation of 3D Concrete Printing Derived from Printer Head and Printing Process
  24. Du Song, Teng Fei, Zhuang Zicheng, Zhang Dong et al. (2024-03)
    A BIM-Enabled Robot-Control System for Automated Integration Between Rebar-Reinforcement and 3D Concrete Printing
  25. Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
    Concrete 3D Printing Technology in Sustainable Construction:
    A Review on Raw Materials, Concrete Types and Performances
  26. Kakarla Akesh, Kong Ing, Patel Vipulkumar (2024-02)
    Additive Manufacturing for Building and Constructions
  27. Chen Kailun, Liu Qiong, Chen Bing, Zhang Shishun et al. (2024-01)
    A Review on Effect of Raw Materials on the Performance of 3D Printed Geopolymer System for Construction
  28. Panda Biranchi, Shakor Pshtiwan, Laghi Vittoria (2023-12)
    Powder-Bed Additive Manufacturing
  29. Warsi Syed, Srinivas Dodda, Panda Biranchi, Biswas Pankaj (2023-12)
    Investigating the Impact of Coarse Aggregate Dosage on the Mechanical Performance of 3D Printable Concrete
  30. Koneswaran Bahirathan, Rajeev Pathmanathan, Sanjayan Jay (2023-11)
    Development of a Prototype Concept for Using 3D Concrete Printing in Pavement Construction
  31. Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-10)
    Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers
  32. Lu Bing, Zhao Huanyu, Li Mingyang, Wong Teck et al. (2023-10)
    MgO/Fluid Catalytic Cracking Ash-Blends for 3D Printing on Vertical Surfaces
  33. Noaimat Yazeed, Chougan Mehdi, Albar Abdulrahman, Skibicki Szymon et al. (2023-10)
    Recycled Brick-Aggregates in One-Part Alkali-Activated Materials:
    Impact on 3D Printing Performance and Material-Properties
  34. Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
    Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete
  35. Chen Yidong, Zhang Yunsheng, Zhang Yu, Pang Bo et al. (2023-08)
    Influence of Gradation on Extrusion-Based 3D Printing Concrete with Coarse Aggregate
  36. Placzek Gerrit, Schwerdtner Patrick (2023-07)
    Concrete Additive Manufacturing in Construction:
    Integration Based on Component-Related Fabrication-Strategies
  37. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  38. Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-05)
    Sandwich-Structured Porous Concrete Manufactured by Mortar-Extrusion and Aggregate-Bed 3D Printing
  39. Paul Suvash, Basit Md, Hasan Noor, Dey Dhrutiman et al. (2023-04)
    3D Printing of Geopolymer Mortar:
    Overview of the Effect of Mix-Design and Printing Parameters on the Strength
  40. Chen Yidong, Zhang Wenhua, Zhang Yunsheng, Zhang Yu et al. (2023-03)
    3D Printed Concrete with Coarse Aggregates:
    Built-In-Stirrup Permanent Concrete Formwork for Reinforced Columns
  41. Tamimi Adil, Alqamish Habib, Khaldoune Ahlam, Alhaidary Haidar et al. (2023-03)
    Framework of 3D Concrete Printing Potential and Challenges
  42. Chaiyotha Danai, Kantawong Watcharapong, Payakanitia Panjasila, Pinitsoontorn Supree et al. (2023-03)
    Finding Optimized Conditions for 3D Printed High-Calcium Fly-Ash-Based Alkali-Activated Mortar
  43. Liu Chao, Wang Zhihui, Wu Yiwen, Liu Huawei et al. (2023-02)
    3D Printing Concrete with Recycled Sand:
    The Influence Mechanism of Extruded Pore-Defects on Constitutive Relationship
  44. Zhang Nan, Sanjayan Jay (2023-01)
    Extrusion Nozzle Design and Print Parameter Selections for 3D Concrete Printing
  45. Jiang Fangming, Long Xiong, Tian Likang, Tan Yan et al. (2022-12)
    Tensile Strain-Hardening Cementitious Composites and Its Practical Exploration Without Reinforcement:
    A Review
  46. Liu Xiongfei, Li Jixiang, Li Qi, Hou Gunayu (2022-11)
    Mechanical Performance Optimization in Spray-Based Three-Dimensional-Printed Mortar Using Carbon-Fiber
  47. Zhou Yiyi, Jiang Dan, Sharma Rahul, Xie Yi et al. (2022-11)
    Enhancement of 3D Printed Cementitious Composite by Short Fibers:
    A Review
  48. Puzatova (nee Sharanova) Anastasiia, Shakor Pshtiwan, Laghi Vittoria, Dmitrieva Maria (2022-11)
    Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer:
    A Review
  49. Qu Zhengyao, Geng Guoqing (2022-10)
    Thermal Response Gelatin-Cement-Composite for 3D Concrete Printing
  50. Li Mingyang, Weng Yiwei, Liu Zhixin, Zhang Dong et al. (2022-09)
    Optimizing of Chemical Admixtures for 3D Printable Cementitious Materials by Central Composite Design
  51. Zhao Yanhua, Meng Wei, Wang Peifu, Qian Dongqing et al. (2022-09)
    Research-Progress of Concrete 3D Printing Technology and Its Equipment System, Material, and Molding-Defect-Control
  52. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  53. Yu Shiwei, Sanjayan Jay, Du Hongjian (2022-07)
    Effects of Cement Mortar Characteristics on Aggregate-Bed 3D Concrete Printing
  54. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  55. Danish Aamar, Khurshid Kiran, Mosaberpanah Mohammad, Ozbakkaloglu Togay et al. (2022-06)
    Micro-Structural Characterization, Driving Mechanisms, and Improvement-Strategies for Inter-Layer Bond Strength of Additive Manufactured Cementitious Composites:
    A Review
  56. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  57. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  58. Zhang Hanghua, Xiao Jianzhuang, Duan Zhenhua, Zou Shuai et al. (2022-06)
    Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar
  59. Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
    Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate
  60. Chen Yidong, Zhang Yunsheng, Pang Bo, Wang Dafu et al. (2022-04)
    Steel-Fiber Orientational Distribution and Effects on 3D Printed Concrete with Coarse Aggregate
  61. Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-03)
    Modifying Effect of Anionic Polyacrylamide Dose for Cement-Based 3DP Materials:
    Printability and Mechanical Performance Tests
  62. Pan Tinghong, Teng Huaijin, Liao Hengcheng, Jiang Yaqing et al. (2022-03)
    Effect of Shaping Plate Apparatus on Mechanical Properties of 3D Printed Cement-Based Materials:
    Experimental and Numerical Studies
  63. Tay Yi, Lim Jian, Li Mingyang, Tan Ming (2022-03)
    Creating Functionally Graded Concrete Materials with Varying 3D Printing Parameters
  64. Jiang Zhengwu, Yang Qian, Zhu Yanmei, Zhang Yi et al. (2022-03)
    Evaluating the Stiffening Effect of CSA and Sodium Carbonate on the Printability of OPC Mortar
  65. Lowke Dirk, Mai (née Dressler) Inka, Keita Emmanuel, Perrot Arnaud et al. (2022-02)
    Material-Process Interactions in Particle-Bed 3D Printing and the Underlying Physics
  66. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  67. Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
    Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure
  68. Mai (née Dressler) Inka, Brohmann Leon, Freund Niklas, Gantner Stefan et al. (2021-10)
    Large Particle 3D Concrete Printing:
    A Green and Viable Solution
  69. Zhang Nan, Xia Ming, Sanjayan Jay (2021-10)
    Short-Duration Near-Nozzle Mixing for 3D Concrete Printing
  70. Zhang Hanghua, Xiao Jianzhuang (2021-08)
    Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand
  71. Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
    Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates
  72. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  73. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  74. Sambucci Matteo, Valente Marco (2021-06)
    Influence of Waste-Tire-Rubber-Particles-Size on the Microstructural, Mechanical, and Acoustic Insulation Properties of 3D Printable Cement Mortars
  75. Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
    Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
    Printability and Direction-Dependent Mechanical Performance
  76. Marchment Taylor, Sanjayan Jay (2021-04)
    Reinforcement Method for 3D Concrete Printing Using Paste-Coated Bar Penetrations
  77. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  78. Vespalec Arnošt, Novák Josef, Kohoutková Alena, Vosynek Petr et al. (2020-11)
    Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing

BibTeX
@article{yu_du_sanj.2020.AB3CPwCPB,
  author            = "Shiwei Yu and Hongjian Du and Jay Gnananandan Sanjayan",
  title             = "Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder",
  doi               = "10.1016/j.cemconres.2020.106169",
  year              = "2020",
  journal           = "Cement and Concrete Research",
  volume            = "136",
}
Formatted Citation

S. Yu, H. Du and J. G. Sanjayan, “Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder”, Cement and Concrete Research, vol. 136, 2020, doi: 10.1016/j.cemconres.2020.106169.

Yu, Shiwei, Hongjian Du, and Jay Gnananandan Sanjayan. “Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder”. Cement and Concrete Research 136 (2020). https://doi.org/10.1016/j.cemconres.2020.106169.