Skip to content

The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite (2021-11)

10.1016/j.conbuildmat.2021.125809

Yao Hao,  Xie Zonglin, Li Zemin, Huang Chuhan,  Yuan Qiang, Zheng Xinguo
Journal Article - Construction and Building Materials, Vol. 316

Abstract

The rheological behavior of fresh 3D printing concrete (3DPC) not only determines the pumpability, extrudability and buildability, but also strongly affects the interlayer properties. Which is one of the most important characteristics of 3D printing construction that shaped layer by layer. This paper systematically studied the relationship between the rheological behavior (tuned by attapulgite) and the interlayer bonding properties of 3DPC. The results showed that the interlayer bonding strength and interlayer durability strongly depend on the rheological parameters (i.e., dynamic yield stress, plastic viscosity, static yield stress and structural build-up rate). With the increase of dynamic yield stress and structural build-up rate, the interlayer bonding strength and interlayer durability both decreased. Moreover, an empirical formula combining interlayer bonding strength with the dynamic yield stress and the structural build-up rate of 3DPC, considering the porosity and hydration degree, was proposed for the first time.

30 References

  1. Baz Bilal, Aouad Georges, Kleib Joelle, Bulteel David et al. (2021-04)
    Durability-Assessment and Micro-Structural Analysis of 3D Printed Concrete Exposed to Sulfuric-Acid Environments
  2. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  3. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  4. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  5. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  6. He Lewei, Chow Wai, Li Hua (2020-06)
    Effects of Inter-Layer Notch and Shear Stress on Inter-Layer Strength of 3D Printed Cement-Paste
  7. Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
    A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
    An Experimental and Computational Investigation
  8. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  9. Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
    Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
    Measurement and Physical Origin
  10. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  11. Khoshnevis Behrokh, Dutton Rosanne (1998-01)
    Innovative Rapid Prototyping Process Makes Large-Sized, Smooth-Surfaced Complex Shapes in a Wide Variety of Materials
  12. Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
    Mega-Scale Fabrication by Contour Crafting
  13. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  14. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  15. Pan Tinghong, Jiang Yaqing, He Hui, Wang Yu et al. (2021-01)
    Effect of Structural Build-Up on Inter-Layer Bond Strength of 3D Printed Cement Mortars
  16. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  17. Qian Ye, Schutter Geert (2018-06)
    Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE)
  18. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  19. Vallurupalli Kavya, Farzadnia Nima, Khayat Kamal (2021-01)
    Effect of Flow Behavior and Process-Induced Variations on Shape Stability of 3D Printed Elements:
    A Review
  20. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  21. Weng Yiwei, Li Mingyang, Wong Teck, Tan Ming (2021-01)
    Synchronized Concrete and Bonding-Agent-Deposition-System for Inter-Layer Bond Strength Enhancement in 3D Concrete Printing
  22. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  23. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  24. Xu Yanqun, Yuan Qiang, Li Zemin, Shi Caijun et al. (2021-09)
    Correlation of Inter-Layer Properties and Rheological Behaviors of 3DPC with Various Printing Time Intervals
  25. Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
    A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar
  26. Zareiyan Babak, Khoshnevis Behrokh (2017-08)
    Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
  27. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  28. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  29. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  30. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
    Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials

62 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Dao Trang, Chau Vinh, Tran Jonathan, Tran Mien (2026-01)
    Balancing Workability, Buildability, and Carbon Sequestration in 3D Printed Concrete via Direct CO2 Mineralization
  3. Han Seongho, Ahn Eunjong, Shin Myoungsu, Popovics John et al. (2025-12)
    Methodology for Surface Defect Assessment in 3D Concrete Printing Using Computer-Vision and Ultrasonic Testing Considering Structural Build-Up
  4. Feng Hu, Yuan Xiang, Yu Zhenyu, Guo Aofei et al. (2025-12)
    Printability and Rheological Properties of 3D Printing Ultra-High Ductility Magnesium Phosphate Cement-Based Composites
  5. Sun Yan, Du Guoqiang, Mudasir Maryam (2025-11)
    Rheological Investigations of Fresh Fiber-Reinforced Cementitious Composites Using Hydrophobic / Hydrophilic UHMWPE Fibers for 3D Concrete Printing Evaluation
  6. Liu Renlong, Cheng Zhangqi (2025-10)
    Interlayer Fracture Properties of 3D-Printed Cement-Based Structures:
    Influencing Factors and Mechanisms
  7. Zhang Chao, Zhu Xiaohong, Li Muduo, Zhang Yuying et al. (2025-10)
    Enhancing Interface Adhesion of 3D Printable Concrete by Biochar Integration
  8. Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
    Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures
  9. Zhang Yi, Ren Qiang, Tittelboom Kim, Schutter Geert et al. (2025-09)
    Layer Interface in 3D Printed Cement-Based Materials:
    Heterogeneous Phase Distribution and New Insights into Formation Mechanism
  10. Si Wen, Carr Liam, Zia Asad, Khan Mehran et al. (2025-08)
    Advancing 3D Printable Concrete with Nanoclays:
    Rheological and Mechanical Insights for Construction Applications
  11. Abid Khasim, Syed Sajid, Khan Majid (2025-08)
    Explainable Machine Learning-Based Model for Predicting Interlayer Bond Strength in 3D Printed Concrete
  12. Motiani Ronak, Sylvain Saha, Dalal Sejal, Vora Jay et al. (2025-08)
    Innovative Reinforcement Techniques for 3D-Printed Concrete:
    The Impact of Shape Memory Alloys on Flexural Strength and Crack Mitigation
  13. Ali Syed, Haq Mohd, Khan Rizwan, Hashmi Ahmad (2025-07)
    A Comprehensive Review on 3D Printing of Concrete:
    Materials, Methods and Mechanical Properties
  14. Popli Siddharth, Valikhah Fatemeh, Zandi Lak Erfan, Das Sreekanta (2025-07)
    Mechanical and Durability Performance of 3D-Printed Concrete with Coarse Aggregates and Cold Joints
  15. Li Qiyan, Su Anshuang, Gao Xiaojian (2025-06)
    Improvement of Interlayer Performance of 3D Printable Magnesium Oxysulfate Cement-Based Materials by Carbonation Curing
  16. Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing
  17. Liu Qiong, Singh Amardeep, Wang Qiming, Qifeng Lyu (2025-05)
    3D-Printed Application in Concretes
  18. Huang Jianxiang, Wang Caifeng, Jian Shouwei, Tan Hongbo et al. (2025-04)
    Feasibility of Applying Attapulgite, Sodium Bentonite and Nano-Silica as a Viscosity Modifier Admixture for 3D Printing of Gypsum-Based Materials
  19. Liu Chuanbei, Zou Mengtong, Chen Xuemei, Deng Yongjun et al. (2025-04)
    Feasibility Study of 3D-Printed Rubberized Concrete as a Permanent Formwork:
    Mechanical Properties, Interlayer Interface and Durability
  20. Ahn Eunjong, Han Seongho, Shin Myoungsu, Khayat Kamal et al. (2025-01)
    Novel Method to Evaluate 3D Printed Concrete Quality Using Ultrasonic Scatter-Energy-Techniques
  21. Nan Bo, Qiao Youxin, Leng Junjie, Bai Yikui (2025-01)
    Advancing Structural Reinforcement in 3D Printed Concrete:
    Current Methods, Challenges, and Innovations
  22. Liu Huawei, Wang Yifei, Zhu Chao, Wu Yiwen et al. (2024-11)
    Design of 3D Printed Concrete Masonry for Wall Structures:
    Mechanical Behavior and Strength Calculation Methods Under Various Loads
  23. Wu Mushuang, Wang Zixiao, Chen Yuxuan, Zhu Mengyu et al. (2024-11)
    Effect of Steel-Slag on Rheological and Mechanical Properties of Sulfoaluminate-Cement-Based Sustainable 3D Printing Concrete
  24. Wagner Juliana, Silveira Marcos, Vanderlei Romel, Das Sreekanta (2024-10)
    Comparative Analysis of Mold-Cast and 3D Printed Cement-Based Components:
    Implications for Standardization in Additive Construction
  25. Ding Yao, Ou Xingjian, Qi Hongtuo, Xiong Gang et al. (2024-10)
    Inter-Layer Bonding Performance of 3D Printed Engineered Cementitious Composites:
    Rheological Regulation and Fiber Hybridization
  26. Over Derya, Ozbakan Nesil, Bustani Mehmet, Karali Bulut (2024-10)
    An Investigation of Rheological Properties and Sustainability of Various 3D Printing Concrete Mixtures with Alternative Binders and Rheological Modifiers
  27. Subramaniam Kolluru, Paritala Spandana, Kulkarni Omkar, Thakur Manideep (2024-09)
    Fracture in 3D Printed Concrete Beams:
    Deflection and Penetration of Impinging Cracks at Layer Interfaces
  28. Wang Xianggang, Dong Enlai, Jia Zijian, Jia Lutao et al. (2024-09)
    Specimen-Size-Effect on Compressive Strength of 3D Printed Concrete Containing Coarse Aggregate with Varying Water-to-Binder-Ratios
  29. Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
    Porosity and Durability Tests on 3D Printing Concrete:
    A Review
  30. Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
    On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements
  31. Luo Qiling, Yu Ke-Ke, Long Wujian, Zheng Shuyi et al. (2024-07)
    Influence of Different Types of Superabsorbent Polymers on Fresh Mechanical Properties and Inter-Layer Adhesion of 3D Printed Concrete
  32. Şahin Hatice, Mardani Ali, Mardani Naz (2024-07)
    Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete
  33. Teng Fei, Ye Junhong, Yu Jie, Li Heng et al. (2024-07)
    Development of Strain-Hardening Cementitious Composites (SHCC) As Bonding Materials to Enhance Inter-Layer and Flexural Performance of 3D Printed Concrete
  34. Gu Yucun, Khayat Kamal (2024-06)
    Effect of Superabsorbent Polymer on 3D Printing Characteristics as Rheology-Modified-Agent
  35. Yan Yufei, Zhang Mo, Ma Guowei, Sanjayan Jay (2024-05)
    Enhancing Inter-Layer Bonding Strength of 3D Printed Ternary Geopolymer Using Calcium-Carbonate-Whiskers Spray
  36. Gu Yucun, Zheng Shuyi, Ma Hongyan, Long Wujian et al. (2024-05)
    Effect of Absorption Kinetics of Superabsorbent Polymers on Printability and Inter-Layer Bond of 3D Printing Concrete
  37. Chen Yuxuan, Zhang Longfei, Wei Kai, Gao Huaxing et al. (2024-04)
    Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide
  38. Wu Dinglue, Luo Qiling, Long Wujian, Zhang Shunxian et al. (2024-02)
    Advancing Construction 3D Printing with Predictive Inter-Layer Bonding Strength:
    A Stacking Model Paradigm
  39. Geng Songyuan, Luo Qiling, Cheng Boyuan, Li Lixao et al. (2024-02)
    Intelligent Multi-Objective Optimization of 3D Printing Low-Carbon Concrete for Multi-Scenario Requirements
  40. Şahin Hatice, Mardani Ali, Beytekin Hatice (2024-02)
    Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete
  41. Khan Shayan, Ghazi Syed, Amjad Hassan, Imram Muhammad et al. (2023-12)
    Emerging Horizons in 3D Printed Cement-Based Materials with Nano-Material-Integration:
    A Review
  42. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2023-12)
    3D Concrete Printing in Air and Under Water:
    A Comparative Study on the Buildability and Inter-Layer Adhesion
  43. Şahin Hatice, Mardani Ali (2023-10)
    How Does Rheological Behavior Affect the Inter-Layer Bonding Strength of 3DPC Mixtures?
  44. Rui Aoyu, Wang Li, Lin Wenyu, Ma Guowei (2023-10)
    Experimental Study on Damage Anisotropy of 3D Printed Concrete Exposed to Sulfate-Attack
  45. Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
    Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete
  46. Yin Yunchao, Huang Jian, Wang Tiezhu, Yang Rong et al. (2023-09)
    Effect of Hydroxypropyl-Methylcellulose on Rheology and Printability of the First Printed Layer of Cement Activated Slag-Based 3D Printing Concrete
  47. Yue Hongfei, Zhang Zhuxian, Hua Sudong, Gao Yanan et al. (2023-09)
    Solid Waste-Based Set-on-Demand 3D Printed Concrete:
    Active Rheological-Control of Cement-Based Magneto-Rheological Fluids
  48. Quah Tan, Vo Tran, Tay Yi, Tan Ming et al. (2023-09)
    Real-Time-Assessment of Smart Concrete Inspection with Piezoelectric Sensors
  49. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  50. Chen Mingxu, Jin Yuan, Sun Keke, Wang Shoude et al. (2023-08)
    Study on the Durability of 3D Printed Calcium-Sulphoaluminate Cement-Based Materials Related to Rheology-Control
  51. Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
    Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
    A Critical Review
  52. Şahin Hatice, Temel Müge, Mardani Ali (2023-04)
    Determination of Optimum VMA Utilization Dosage in Cementitious Systems:
    In Terms of Rheological and Flowability Properties
  53. Chen Yanjuan, Kuva Jukka, Mohite Ashish, Li Zhongsen et al. (2023-03)
    Investigation of the Internal Structure of Hardened 3D Printed Concrete by X-CT Scanning and Its Influence on the Mechanical Performance
  54. Wang Ziyue, Chen Zixuan, Xiao Jianzhuang, Ding Tao (2023-03)
    Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar
  55. Quah Tan, Tay Yi, Lim Jian, Tan Ming et al. (2023-03)
    Concrete 3D Printing:
    Process-Parameters for Process-Control, Monitoring and Diagnosis in Automation and Construction
  56. Şahin Hatice, Mardani Ali (2023-02)
    Mechanical Properties, Durability Performance and Inter-Layer Adhesion of 3DPC Mixtures:
    A State‐of‐the‐art Review
  57. Tinoco Matheus, Gouvêa Lucas, Cássia Magalhães Martins Karenn, Toledo Filho Romildo et al. (2022-12)
    The Use of Rice Husk Particles to Adjust the Rheological Properties of 3D Printable Cementitious Composites Through Water Sorption
  58. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  59. Yuan Qiang, Xie Zonglin, Yao Hao, Huang Tingjie et al. (2022-06)
    Effect of Polyacrylamide on the Workability and Inter-Layer Interface Properties of 3D Printed Cementitious Materials
  60. Barbosa Marcella, Anjos Marcos, Cabral Kleber, Souza Dias Leonardo (2022-05)
    Development of Composites for 3D Printing with Reduced Cement Consumption
  61. Pan Tinghong, Jiang Yaqing, Ji Xuping (2022-03)
    Inter-Layer Bonding Investigation of 3D Printing Cementitious Materials with Fluidity-Retaining Polycarboxylate-Superplasticizer and High-Dispersion Polycarboxylate Superplasticizer
  62. Yuan Qiang, Gao Chao, Huang Tingjie, Zuo Shenghao et al. (2022-03)
    Factors Influencing the Properties of Extrusion-Based 3D Printed Alkali-Activated Fly-Ash-Slag Mortar

BibTeX
@article{yao_xie_li_huan.2022.TRBtRBaILBPo3PCMwtAoA,
  author            = "Hao Yao and Zonglin Xie and Zemin Li and Chuhan Huang and Qiang Yuan and Xinguo Zheng",
  title             = "The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite",
  doi               = "10.1016/j.conbuildmat.2021.125809",
  year              = "2022",
  journal           = "Construction and Building Materials",
  volume            = "316",
}
Formatted Citation

H. Yao, Z. Xie, Z. Li, C. Huang, Q. Yuan and X. Zheng, “The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite”, Construction and Building Materials, vol. 316, 2022, doi: 10.1016/j.conbuildmat.2021.125809.

Yao, Hao, Zonglin Xie, Zemin Li, Chuhan Huang, Qiang Yuan, and Xinguo Zheng. “The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite”. Construction and Building Materials 316 (2022). https://doi.org/10.1016/j.conbuildmat.2021.125809.