Skip to content

Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams (2021-09)

10.1016/j.cemconcomp.2021.104254

 Nair Sooraj,  Tripathi Avinaya,  Neithalath Narayanan
Journal Article - Cement and Concrete Composites, Vol. 124

Abstract

A significant amount of work has focused on the development of concrete mixtures for digital manufacturing (3D printing), and their rheological and mechanical properties. However, for extrusion-based layered manufacturing, it is also important to select the appropriate printing parameters that have the potential to impact the performance of 3D printed elements. Among the many such parameters, this paper places emphasis on layer height, which has a direct bearing on rheology requirements, print quality, overall printing time, and interlayer bonding. Specifically, this paper examines the effects of layer height (5, 10, and 15 mm layer heights corresponding to 25, 50, and 75% of the nozzle diameter, which is 20 mm) on the flexural strength and fracture properties of 3D printed beams. Flexural and fracture properties indicate that smaller layer heights are beneficial for unreinforced and fiber-reinforced 3D printed mortars, even though this results in greater number of interfaces and longer printing times. A small amount of steel fiber reinforcement is shown to be useful in eliminating the negative effects of weak interfaces on the measured bulk properties, with average flexural strengths higher by 30–40% and fracture toughness and crack tip opening displacement higher by almost 30% as compared to plain mixtures. Strain energy release rates, digital image correlation, and optical images/micrographs are used to explain crack propagation in layered 3D printed mortars under unnotched four-point, and notched three-point bending.

37 References

  1. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  2. Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
    Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing
  3. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  4. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  5. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  6. Carneau Paul, Mesnil Romain, Ducoulombier Nicolas, Roussel Nicolas et al. (2020-07)
    Characterisation of the Layer-Pressing-Strategy for Concrete 3D Printing
  7. Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
    Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
    An Experimental and Numerical Study
  8. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  9. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  10. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  11. Hack Norman, Mai (née Dressler) Inka, Brohmann Leon, Gantner Stefan et al. (2020-03)
    Injection 3D Concrete Printing (I3DCP):
    Basic Principles and Case Studies
  12. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  13. Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
    Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete
  14. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  15. Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
    Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
    Measurement and Physical Origin
  16. Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
    Mega-Scale Fabrication by Contour Crafting
  17. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  18. Li Zhijian, Wang Li, Ma Guowei (2018-05)
    Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar
  19. Lloret-Fritschi Ena, Reiter Lex, Wangler Timothy, Gramazio Fabio et al. (2017-03)
    Smart Dynamic Casting:
    Slipforming with Flexible Formwork
  20. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  21. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  22. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  23. Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
    A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing
  24. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  25. Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman et al. (2019-01)
    Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing
  26. Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
    A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders
  27. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  28. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  29. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  30. Paolini Alexander, Kollmannsberger Stefan, Rank Ernst (2019-10)
    Additive Manufacturing in Construction:
    A Review on Processes, Applications, and Digital Planning Methods
  31. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
    Mechanical Characterization of 3D Printable Concrete
  32. Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
    The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete
  33. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  34. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Sanjayan Jay (2019-12)
    Dimensional Accuracy, Flowability, Wettability, and Porosity in Inkjet 3DP for Gypsum and Cement Mortar Materials
  35. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  36. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  37. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure

50 Citations

  1. Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
    Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
    A Systematic Review
  2. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  3. Li Fuhai, Xiao Sai, Yang Bo, Li Kepu et al. (2025-09)
    Mechanical Properties and Anisotropy of 3D-Printed Concrete Modified with Multiscale Materials Based on Optimized Printing Process Design
  4. Kiyani Muhammad, Hussain Syed, Emaan Rajja, Kamal Muhammad et al. (2025-08)
    Influence of Process Parameters on 3D Concrete Printing:
    A Step Towards Standardized Approaches
  5. Dong Liang, Wu Chengqing, Liu Zhongxian, Wu Pengtao et al. (2025-07)
    Chloride Transport Anisotropy and Interfacial Degradation in 3D-Printed Ultra-High-Performance Concrete:
    Multi-Scale Evaluation and Engineering Implications
  6. Ye Chengjie, Xu Jie, Lacidogna Giuseppe (2025-06)
    Fracture Behavior of 3D Printed Geopolymer Concrete Containing Waste Ceramic
  7. Hopkins Ben, Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    Recent Advancements in Polypropylene Fiber-Reinforced 3D-Printed Concrete:
    Insights into Mix Ratios, Testing Procedures, and Material Behaviour
  8. Tao Yaxin, Zhang Yi, Mohan Manu, Dai Xiaodi et al. (2025-05)
    Waste-Derived Aggregates in 3D Printable Concrete:
    Current Insights and Future Perspectives
  9. Mukhtar Faisal (2025-05)
    3D-Printed Concrete Fracture:
    Effects of Cohesive Laws, Mixes, and Print Parameters in 3D EXtended FEM
  10. Yang Shutong, Chen Zhengyuan, Lan Tian, Yang Tiange (2025-05)
    Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions
  11. Dabbaghisouraki Farshad, Tanhadoust Amin, Nehdi Moncef (2025-04)
    Fiber Reinforcement Strategies in 3D Concrete Printing:
    Addressing Challenges and Identifying Research Gaps
  12. Salaimanimagudam M., Jayaprakash Jaganathan (2025-04)
    Effect of Nozzle Stand-Off Distance, Printing Interval, and Inclusion of Glass Fiber Mesh Reinforcement in 3D Printed Concrete
  13. Lin Yuxin, Bayramvand Alireza, Meibodi Mania (2025-04)
    Towards Lightweight Structure:
    Coupling Topology Optimization with Non-Planar 3D Concrete Printing
  14. Kurniati Eka, Kim Heejeong (2025-04)
    Enhancing the Printability of 3D Printing Limestone Calcined Clay Cement Using Hydroxyethyl Cellulose Admixture and Silica Fume
  15. Zat Tuani, Schuster Sílvio, Schmitt Duarte Ester, Freitas Daudt Natália et al. (2025-03)
    Rheological Properties of High-Performance Concrete Reinforced with Microfibers and Their Effects on 3D Printing Process
  16. Givkashi Mohammad, Moodi Faramarz, Ramezanianpour Amir (2025-02)
    Effect of Air-Entraining Agent on Hardened Properties of 3D Printed Concrete with Emphasis on Permeability and Air Void Structure
  17. Hassan Amer, Alomayri Thamer, Noaman Mohammed, Zhang Chunwei (2025-01)
    3D Printed Concrete for Sustainable Construction:
    A Review of Mechanical Properties and Environmental Impact
  18. Glotz Theresa, Rasehorn Inken, Petryna Yuri (2024-12)
    Mechanical Behavior of Hardened Printed Concrete and the Effect of Cold Joints:
    An Experimental Investigation
  19. Yang Yekai, Zhang Chiyu, Liu Zhongxian, Dong Liang et al. (2024-10)
    Effect of Hydration Process on the Inter-Layer Bond Tensile Mechanical Properties of Ultra-High-Performance Concrete for 3D Printing
  20. Lin Yini, Yan Jiachuan, Sun Ming, Han Xiaoyu et al. (2024-10)
    Inter-Layer Cohesion in 3D Printed Concrete:
    The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure
  21. Subramaniam Kolluru, Paritala Spandana, Kulkarni Omkar, Thakur Manideep (2024-09)
    Fracture in 3D Printed Concrete Beams:
    Deflection and Penetration of Impinging Cracks at Layer Interfaces
  22. Tarhan Yeşim, Tarhan İsmail, Jacquet Yohan, Perrot Arnaud (2024-09)
    Mechanical Behavior of 3D Printed and Textile-Reinforced Eco-Friendly Composites
  23. Yang Rijiao, Xu Chengji, Lan Yan, Qiu Yue et al. (2024-08)
    Near Pixel-Level Characterisation of Micro-Fibers in 3D Printed Cementitious Composites and Migration Mechanisms Using a Novel Iterative Method
  24. Glotz Theresa, Petryna Yuri (2024-08)
    Experimental Characterization of Anisotropic Mechanical Behavior and Failure-Mechanisms of Hardened Printed Concrete
  25. To Quoc, Pham Koa, Lee Gayoon, Shin Myoungsu et al. (2024-06)
    Experimental and FEM Evaluation of the Influence of Inter-Layer Bonding Strength in 3D Printed Concrete Members Under Compressive and Flexural Loadings
  26. Zhi Peng, Wu Yuching, Bai Meiyan (2024-06)
    Determining the Effect of Geometric and Dynamic Properties of Screws on Fiber-Orientation During FRC 3D Printing Based on Discrete Element Simulation
  27. Du Guoqiang, Qian Ye (2024-05)
    Effects of Printing-Patterns and Loading-Directions on Fracture Behavior of 3D Printed Strain-Hardening Cementitious Composites
  28. Tripathi Avinaya, Nair Sooraj, Chauhan Harshitsinh, Neithalath Narayanan (2024-04)
    Print Geometry Alterations and Layer-Staggering to Enhance Mechanical Properties of Plain and Fiber-Reinforced Three-Dimensional-Printed Concrete
  29. Shahid Mursaleen, Sglavo Vincenzo (2024-03)
    Binder-Jetting 3D Printing of Binary Cement-Siliceous Sand Mixture
  30. Chen Zhengyuan, Yang Shutong, Liu Qi, Xu Mingqi et al. (2024-03)
    Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete
  31. Xiao Jianzhuang, Liu Haoran, Ding Tao, Yu Kequan et al. (2024-02)
    Rebar-Free Concrete Construction:
    Concept, Opportunities and Challenges
  32. Liu Qiong, Cheng Shengbo, Peng Bin, Chen Kailun et al. (2024-01)
    The Buildability and Flexural Properties of 3D Printed Recycled Mortar Reinforced with Synchronized Steel-Cable Under Different Reinforcement Ratios
  33. Tang Yuxiang, Xiao Jianzhuang, Ding Tao, Liu Haoran et al. (2024-01)
    Trans-Layer and Inter-Layer Fracture Behavior of Extrusion-Based 3D Printed Concrete Under Three-Point Bending
  34. Li Yeou-Fong, Tsai Pei-Jen, Syu Jin-Yuan, Lok Man-Hoi et al. (2023-12)
    Mechanical Properties of 3D Printed Carbon Fiber-Reinforced Cement Mortar
  35. Liu Ke, Takasu Koji, Jiang Jinming, Zu Kun et al. (2023-12)
    Mechanical Properties of 3D Printed Concrete Components:
    A Review
  36. Warsi Syed, Panda Biranchi, Biswas Pankaj (2023-12)
    Exploring Fiber Addition Methods and Mechanical Properties of Fiber-Reinforced 3D Printed Concrete:
    A Review
  37. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2023-11)
    Constitutive Response and Failure Progression in Digitally Fabricated 3D Printed Concrete Under Compression and Their Dependence on Print Layer-Height
  38. Liu Qiong, Cheng Shengbo, Sun Chang, Chen Kailun et al. (2023-11)
    Steel-Cable Bonding in Fresh Mortar and 3D Printed Beam Flexural Behavior
  39. Surehali Sahil, Tripathi Avinaya, Neithalath Narayanan (2023-08)
    Anisotropy in Additively Manufactured Concrete Specimens Under Compressive Loading:
    Quantification of the Effects of Layer-Height and Fiber-Reinforcement
  40. Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
    Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
    A Critical Review
  41. Zbyszyński Wojciech, Pietras Daniel, Sadowski Tomasz (2023-04)
    Data-Image-Correlation-Analysis of the Destruction-Process of 3D Printable Layered Beams Subjected to the Three-Point Bending Process
  42. Chen Hao, Zhang Daobo, Chen Peng, Li Ning et al. (2023-03)
    A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing
  43. Surehali Sahil, Tripathi Avinaya, Nimbalkar Atharwa, Neithalath Narayanan (2023-01)
    Anisotropic Chloride Transport in 3D Printed Concrete and Its Dependence on Layer-Height and Interface-Types
  44. Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
    Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete
  45. Zhou Yiyi, Jiang Dan, Sharma Rahul, Xie Yi et al. (2022-11)
    Enhancement of 3D Printed Cementitious Composite by Short Fibers:
    A Review
  46. Che Yujun, Yang Huashan (2022-10)
    Hydration Products, Pore-Structure, and Compressive Strength of Extrusion-Based 3D Printed Cement-Pastes Containing Nano-Calcium-Carbonate
  47. Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
    How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar?
  48. Yalçınkaya Çağlar (2022-03)
    Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement
  49. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  50. Nair Sooraj, Sant Gaurav, Neithalath Narayanan (2021-11)
    Mathematical Morphology-Based Point-Cloud-Analysis-Techniques for Geometry-Assessment of 3D Printed Concrete Elements

BibTeX
@article{nair_trip_neit.2021.ELHEotFaFRoPaFR3PB,
  author            = "Sooraj Kumar A. O. Nair and Avinaya Tripathi and Narayanan Neithalath",
  title             = "Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams",
  doi               = "10.1016/j.cemconcomp.2021.104254",
  year              = "2021",
  journal           = "Cement and Concrete Composites",
  volume            = "124",
}
Formatted Citation

S. K. A. O. Nair, A. Tripathi and N. Neithalath, “Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams”, Cement and Concrete Composites, vol. 124, 2021, doi: 10.1016/j.cemconcomp.2021.104254.

Nair, Sooraj Kumar A. O., Avinaya Tripathi, and Narayanan Neithalath. “Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams”. Cement and Concrete Composites 124 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104254.