A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete (2020-04)¶
10.1016/j.conbuildmat.2020.119241
, Zeranka Stephan,
Journal Article - Construction and Building Materials, Vol. 254
Abstract
The shape retention capability of an extruded filament is of cardinal importance for quality 3D printed concrete elements. Not only is it a prerequisite for surface aesthetics, but it also contributes towards buildability. Optimisation of filament layer height allows for construction time and cost saving possibilities. This research develops the theoretical framework for an analytical shape retention model that predicts the maximum stable filament layer height at which no plastic yielding occurs, based only on the rheology of a material. The Mohr-Coulomb failure criterion is employed and the model simplified by conservatively negating the effect of interparticle friction. A model is also developed that determines whether sufficient friction is present to induce confinement within a filament layer. An experimental verification process via filament extrusion confirms the applicability of the model. A 6.7% difference in stable filament layer height is obtained by comparison with a finite element analysis, proffering as numerical verification for the model.
¶
16 References
- Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Cho Seung, Kruger Jacques, Rooyen Algurnon, Zeranka Stephan et al. (2019-09)
Rheology of 3D Printable Lightweight Foam-Concrete Incorporating Nano-Silica - Choi Myoungsung, Roussel Nicolas, Kim Youngjin, Kim Jinkeun (2013-01)
Lubrication-Layer Properties During Concrete Pumping - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing - Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-01)
Direct-Shear-Test for the Assessment of Rheological Parameters of Concrete for 3D Printing Applications - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete - Martens Pascal, Mathot Maarten, Bos Freek, Coenders Jeroen (2017-06)
Optimizing 3D Printed Concrete Structures Using Topology Optimization - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Secrieru Egor, Cotardo Dario, Mechtcherine Viktor, Lohaus Ludger et al. (2018-04)
Changes in Concrete Properties During Pumping and Formation of Lubricating Material Under Pressure - Secrieru Egor, Khodor Jad, Schröfl Christof, Mechtcherine Viktor (2018-05)
Formation of Lubricating Layer and Flow Type During Pumping of Cement-Based Materials - Suiker Akke (2018-01)
Mechanical Performance of Wall Structures in 3D Printing Processes:
Theory, Design Tools and Experiments - Vantyghem Gieljan, Boel Veerle, Corte Wouter, Steeman Marijke (2018-09)
Compliance, Stress-Based and Multi-Physics Topology-Optimization for 3D Printed Concrete Structures - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing
51 Citations
- Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
A Comprehensive Review - Xue Jia-Chen, Wang Wei-Chien, Lee Ming-Gin, Huang Chia-Yun et al. (2025-12)
Effect of Aggregate-to-Binder Ratio on 3D Printed Concrete:
Printability, Mechanics, and Shrinkage - Verma Shilpi, Parghi Anant (2025-10)
Machine Learning-Based Prediction of Compressive Strength in Additive Manufacturing of Concrete Technology - Aydin Tolga, Sandalci Ilgin, Aydin Eylül, Kara Burhan et al. (2025-08)
Investigation of Bacterial Cells and Clays as Rheology Modifiers in 3D Concrete Printing - Özalp Abdulkadir, Aldemir Alper (2025-03)
Artificial Intelligence-Based Displacement Capacity Prediction Tool for Three-Dimensional Printed Concrete Walls - Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
Comprehensive Review of Binder Matrices in 3D Printing Construction:
Rheological Perspectives - Zhang Yu, Yu Zhengxing, Zhang Yunsheng, Zhang Jiufu et al. (2024-12)
Study on the Predictive Model for Continuous Build-Height of 3D Printed Concrete Based on Printability and Early Mechanical Properties - Zhang Hongping, Duan Shuni, Hu Zhichao, Liu Litao et al. (2024-09)
Evaluation of Plasticity and Determination of Deformation Index of 3D Printed Composite Cement-Based Materials - Huseien Ghasan, Tan Shea, Saleh Ali, Lim Nor et al. (2024-08)
Test-Procedures and Mechanical Properties of Three-Dimensional Printable Concrete Enclosing Different Mix-Proportions:
A Review and Bibliometric Analysis - Asghari Y., Mohammadyan-Yasouj S., Petrů M., Ghandvar H. et al. (2024-07)
3D Printing and Implementation of Engineered Cementitious Composites:
A Review - Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
3D Concrete Printing Success:
An Exhaustive Diagnosis and Failure-Modes-Analysis - Yang Liuhua, Gao Yang, Chen Hui, Jiao Huazhe et al. (2024-04)
3D Printing Concrete Technology from a Rheology Perspective:
A Review - Duan Zhenhua, Deng Qi, Xiao Jianzhuang, Lv Zhenyuan et al. (2024-01)
Experimental Realization on Stress-Distribution Monitoring During 3D Concrete Printing - Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2023-12)
3D Concrete Printing in Air and Under Water:
A Comparative Study on the Buildability and Inter-Layer Adhesion - Shahzad Qamar, Li Fangyuan (2023-09)
An Innovative Method for Buildability-Assessment of 3D Printed Concrete at Early-Ages - Nguyen Ho, Thach Nguyen, Le Quang, Anh Yonghan (2023-07)
A Review of Current Progress and Application of Machine Learning on 3D Printed Concrete - Arrêteau Manon, Fabien Aurélie, Haddaji Badreddine, Chateigner Daniel et al. (2023-07)
Review of Advances in 3D Printing Technology of Cementitious Materials:
Key Printing Parameters and Properties Characterization - Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials - Bhushan Jindal Bharat, Jangra Parveen (2023-05)
3D Printed Concrete:
A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications - Liu Zhenbang, Li Mingyang, Moo Guo, Kobayashi Hitoshi et al. (2023-05)
Effect of Nano-Structured Silica-Additives on the Extrusion-Based 3D Concrete Printing Application - Fan Dingqiang, Zhu Jinyun, Fan Mengxin, Lu Jianxian et al. (2023-04)
Intelligent Design and Manufacturing of Ultra-High-Performance Concrete:
A Review - Taleb Maria, Bulteel David, Betrancourt Damien, Roudet Francine et al. (2023-04)
Interfacial Weakness Criterion by Indentation in 3D Printed Concrete - Kruger Jacques, Westhuizen Jean-Pierré (2023-03)
Investigating the Poisson Ratio of 3D Printed Concrete - Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Das Utpal et al. (2023-02)
Optimization of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material-Strength Using Factorial Design of Experiment - Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
Modelling of 3D Concrete Printing Process:
A Perspective on Material and Structural Simulations - Zhou Yiyi, Jiang Dan, Sharma Rahul, Xie Yi et al. (2022-11)
Enhancement of 3D Printed Cementitious Composite by Short Fibers:
A Review - Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
Rheology and Printability of Portland-Cement-Based Materials:
A Review - Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
Rheometry for Concrete 3D Printing:
A Review and an Experimental Comparison - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-06)
Mitigating Early-Age Cracking in 3D Printed Concrete Using Fibers, Superabsorbent Polymers, Shrinkage Reducing Admixtures, B-CSA Cement and Curing Measures - Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-06)
Criticality of Microstructural Evolution at an Early-Age on the Buildability of an Accelerated 3D Printable Concrete - Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
Buildability Prediction of 3D Printed Concrete at Early-Ages:
A Numerical Study with Drucker-Prager-Model - Bhattacherjee Shantanu, Santhanam Manu (2022-04)
Investigation on the Effect of Alkali-Free Aluminium Sulfate-Based Accelerator on the Fresh Properties of 3D Printable Concrete - Chen Mingxu, Li Haisheng, Yang Lei, Wang Shoude et al. (2022-03)
Rheology and Shape-Stability-Control of 3D Printed Calcium-Sulphoaluminate-Cement Composites Containing Paper-Milling-Sludge - Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
3D Concrete Printing Modelling of Thin-Walled Structures - Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete - Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
A Review - Liu Xuanting, Sun Bohua (2021-11)
The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2021-09)
Modelling the Inter-Layer Bond Strength of 3D Printed Concrete with Surface Moisture - Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
From Analytical Methods to Numerical Simulations:
A Process Engineering Toolbox for 3D Concrete Printing - Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
Sustainable Materials for 3D Concrete Printing - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review - Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars - Cho Seung, Kruger Jacques, Rooyen Algurnon, Zijl Gideon (2021-03)
Rheology and Application of Buoyant Foam-Concrete for Digital Fabrication - Plessis Anton, Babafemi Adewumi, Paul Suvash, Panda Biranchi et al. (2020-12)
Biomimicry for 3D Concrete Printing:
A Review and Perspective - Sepasgozar Samad, Shi Anqi, Yang Liming, Shirowzhan Sara et al. (2020-12)
Additive Manufacturing Applications for Industry 4.0:
A Systematic Critical Review - Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Hossain Md., Zhumabekova Altynay, Paul Suvash, Kim Jong (2020-10)
A Review of 3D Printing in Construction and Its Impact on the Labor Market - Kruger Jacques, Zijl Gideon (2020-10)
A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
Plastic Shrinkage Cracking in 3D Printed Concrete
BibTeX
@article{krug_zera_zijl.2020.ARBQSSRMfDFC,
author = "Jacques Pienaar Kruger and Stephan Zeranka and Gideon Pieter Adriaan Greeff van Zijl",
title = "A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete",
doi = "10.1016/j.conbuildmat.2020.119241",
year = "2020",
journal = "Construction and Building Materials",
volume = "254",
}
Formatted Citation
J. P. Kruger, S. Zeranka and G. P. A. G. van Zijl, “A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete”, Construction and Building Materials, vol. 254, 2020, doi: 10.1016/j.conbuildmat.2020.119241.
Kruger, Jacques Pienaar, Stephan Zeranka, and Gideon Pieter Adriaan Greeff van Zijl. “A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete”. Construction and Building Materials 254 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119241.