Skip to content

A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing (2023-03)

10.3390/ma16072661

 Chen Hao, Zhang Daobo, Chen Peng,  Li Ning,  Perrot Arnaud
Journal Article - Materials, Vol. 16, Iss. 7

Abstract

Extrusion-based 3D concrete printing (E3DCP) has been appreciated by academia and industry as the most plausible candidate for prospective concrete constructions. Considerable research efforts are dedicated to the material design to improve the extrudability of fresh concrete. However, at the time of writing this paper, there is still a lack of a review paper that highlights the significance of the mechanical design of the E3DCP system. This paper provides a comprehensive review of the mechanical design of the E3DCP extruder system in terms of the extruder system, positioning system and advanced fittings, and their effects on the extrudability are also discussed by relating to the extrusion driving forces and extrusion resistive forces which may include chamber wall shear force, shaping force, nozzle wall shear force, dead zone shear force and layer pressing force. Moreover, a classification framework of the E3DCP system as an extension of the DFC classification framework was proposed. The authors reckoned that such a classification framework could assist a more systematic E3DCP system design.

123 References

  1. Albar Abdulrahman, Chougan Mehdi, Kheetan Mazen, Swash Mohammad et al. (2020-04)
    Effective Extrusion-Based 3D Printing System Design for Cementitious-Based Materials
  2. Andersen Sebastian, Silva Wilson, Paegle Ieva, Nielsen Jens (2020-07)
    Numerical Model Describing the Early-Age Behavior of 3D Printed Concrete:
    Work in Progress
  3. Anton Ana-Maria, Reiter Lex, Wangler Timothy, Frangez Valens et al. (2020-12)
    A 3D Concrete Printing Prefabrication Platform for Bespoke Columns
  4. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  5. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  6. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  7. Baz Bilal, Aouad Georges, Kleib Joelle, Bulteel David et al. (2021-04)
    Durability-Assessment and Micro-Structural Analysis of 3D Printed Concrete Exposed to Sulfuric-Acid Environments
  8. Baz Bilal, Aouad Georges, Leblond Philippe, Mansouri Omar et al. (2020-05)
    Mechanical Assessment of Concrete:
    Steel Bonding in 3D Printed Elements
  9. Bentz Dale, Jones Scott, Bentz Isaiah, Peltz Max (2019-02)
    Towards the Formulation of Robust and Sustainable Cementitious Binders for 3D Additive Construction by Extrusion
  10. Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
    Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete
  11. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Hermens Lex et al. (2019-09)
    The Influence of Material Temperature on the In-Print Strength and Stability of a 3D Print Mortar
  12. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  13. Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
    A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete
  14. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  15. Carneau Paul, Mesnil Romain, Baverel Olivier, Roussel Nicolas (2022-03)
    Layer Pressing in Concrete Extrusion-Based 3D Printing:
    Experiments and Analysis
  16. Carneau Paul, Mesnil Romain, Ducoulombier Nicolas, Roussel Nicolas et al. (2020-07)
    Characterisation of the Layer-Pressing-Strategy for Concrete 3D Printing
  17. Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2019-10)
    An Exploration of 3D Printing Design Space Inspired by Masonry
  18. Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2020-04)
    Additive Manufacturing of Cantilever:
    From Masonry to Concrete 3D Printing
  19. Caron Jean-François, Demont Léo, Ducoulombier Nicolas, Mesnil Romain (2021-06)
    3D Printing of Mortar with Continuous Fibers:
    Principle, Properties and Potential for Application
  20. Cheikh Khadija, Rémond Sébastien, Khalil Noura, Aouad Georges (2017-04)
    Numerical and Experimental Studies of Aggregate-Blocking in Mortar-Extrusion
  21. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  22. Cho Seung, Kruger Jacques, Rooyen Algurnon, Zijl Gideon (2021-03)
    Rheology and Application of Buoyant Foam-Concrete for Digital Fabrication
  23. Claßen Martin, Ungermann Jan, Sharma Rahul (2020-05)
    Additive Manufacturing of Reinforced Concrete:
    Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement
  24. Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-07)
    Influence of Processing Parameters on the Layer Geometry in 3D Concrete Printing:
    Experiments and Modelling
  25. Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
    Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics
  26. Craveiro Flávio, Nazarian Shadi, Bártolo Helena, Bartolo Paulo et al. (2020-02)
    An Automated System for 3D Printing Functionally Graded Concrete-Based Materials
  27. Diggs-McGee Brandy, Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
    Print Time vs. Elapsed Time:
    A Temporal Analysis of a Continuous Printing Operation for Additive Constructed Concrete
  28. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  29. Duballet Romain, Baverel Olivier, Dirrenberger Justin (2017-08)
    Classification of Building Systems for Concrete 3D Printing
  30. Ducoulombier Nicolas, Demont Léo, Chateau Camille, Bornert Michel et al. (2020-04)
    Additive Manufacturing of Anisotropic Concrete:
    A Flow-Based Pultrusion of Continuous Fibers in a Cementitious Matrix
  31. Freund Niklas, Mai (née Dressler) Inka, Lowke Dirk (2020-07)
    Studying the Bond Properties of Vertical Integrated Short Reinforcement in the Shotcrete 3D Printing Process
  32. Gomaa Mohamed, Jabi Wassim, Veliz-Reyes Alejandro, Soebarto Veronica (2021-01)
    3D Printing System for Earth-Based Construction:
    Case Study of Cob
  33. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  34. Hack Norman, Dörfler Kathrin, Walzer Alexander, Wangler Timothy et al. (2020-03)
    Structural Stay-in-Place Formwork for Robotic In-Situ Fabrication of Non-Standard Concrete Structures:
    A Real-Scale Architectural Demonstrator
  35. Hack Norman, Kloft Harald (2020-07)
    Shotcrete 3D Printing Technology for the Fabrication of Slender Fully Reinforced Freeform Concrete Elements with High Surface Quality:
    A Real-Scale Demonstrator
  36. Hass Lauri, Bos Freek (2022-06)
    Robotically Placed Reinforcement Using the Automated Screwing Device:
    An Application Perspective for 3D Concrete Printing
  37. Henke Klaudius, Talke Daniel, Matthäus Carla (2020-07)
    Additive Manufacturing by Extrusion of Lightweight Concrete:
    Strand Geometry, Nozzle Design and Layer Layout
  38. Hoffmann Marcin, Skibicki Szymon, Pankratow Paweł, Zieliński Adam et al. (2020-04)
    Automation in the Construction of a 3D Printed Concrete Wall with the Use of a Lintel Gripper
  39. Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
    A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
    An Experimental and Computational Investigation
  40. Hwang Dooil, Khoshnevis Behrokh (2005-11)
    An Innovative Construction Process-Contour Crafting (CC)
  41. Ji Guangchao, Ding Tao, Xiao Jianzhuang, Du Shupeng et al. (2019-05)
    A 3D Printed Ready-Mixed Concrete Power-Distribution Substation:
    Materials and Construction Technology
  42. Jo Jun, Jo Byung, Cho Woohyun, Kim Jung-Hoon (2020-03)
    Development of a 3D Printer for Concrete Structures:
    Laboratory Testing of Cementitious Materials
  43. Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
    Buildability and Mechanical Properties of 3D Printed Concrete
  44. Kazemian Ali, Yuan Xiao, Davtalab Omid, Khoshnevis Behrokh (2019-01)
    Computer-Vision for Real-Time Extrusion-Quality-Monitoring and Control in Robotic Construction
  45. Kazemian Ali, Yuan Xiao, Meier Ryan, Cochran Evan et al. (2017-06)
    Construction-Scale 3D Printing:
    Shape Stability of Fresh Printing Concrete
  46. Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
    Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
    Measurement and Physical Origin
  47. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  48. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  49. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  50. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication
  51. Kuzmenko Kateryna, Ducoulombier Nicolas, Féraille Adélaïde, Roussel Nicolas (2022-05)
    Environmental Impact of Extrusion-Based Additive Manufacturing:
    Generic Model, Power-Measurements and Influence of Printing-Resolution
  52. Lao Wenxin, Li Mingyang, Tjahjowidodo Tegoeh (2020-09)
    Variable-Geometry Nozzle for Surface Quality Enhancement in 3D Concrete Printing
  53. Lao Wenxin, Li Mingyang, Wong Teck, Tan Ming et al. (2020-02)
    Improving Surface-Finish-Quality in Extrusion-Based 3D Concrete Printing Using Machine-Learning-Based Extrudate-Geometry-Control
  54. Lao Wenxin, Tay Yi, Quirin Didier, Tan Ming (2018-05)
    The Effect of Nozzle Shapes on the Compactness and Strength of Structure Printed in Additive Manufacturing of Concrete
  55. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  56. Li Zhijian, Wang Li, Ma Guowei, Sanjayan Jay et al. (2020-07)
    Strength and Ductility Enhancement of 3D Printing Structure Reinforced by Embedding Continuous Micro-Cables
  57. Lim Sungwoo, Buswell Richard, Valentine Philip, Piker Daniel et al. (2016-06)
    Modelling Curved-Layered Printing Paths for Fabricating Large-Scale Construction Components
  58. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  59. Liu Zhixin, Li Mingyang, Tay Yi, Weng Yiwei et al. (2020-04)
    Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing
  60. Lloret-Fritschi Ena, Shahab Amir, Linus Mettler, Flatt Robert et al. (2014-03)
    Complex Concrete Structures:
    Merging Existing Casting Techniques with Digital Fabrication
  61. Lowke Dirk, Vandenberg Aileen, Pierre Alexandre, Thomas Amaury et al. (2021-07)
    Injection 3D Concrete Printing in a Carrier Liquid:
    Underlying Physics and Applications to Lightweight Space Frame Structures
  62. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  63. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  64. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  65. Marchment Taylor, Sanjayan Jay (2020-09)
    Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing
  66. Marchment Taylor, Sanjayan Jay (2019-10)
    Mesh Reinforcing Method for 3D Concrete Printing
  67. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  68. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  69. Mechtcherine Viktor, Buswell Richard, Kloft Harald, Bos Freek et al. (2021-02)
    Integrating Reinforcement in Digital Fabrication with Concrete:
    A Review and Classification Framework
  70. Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
    3D Printed Steel-Reinforcement for Digital Concrete Construction:
    Manufacture, Mechanical Properties and Bond Behavior
  71. Mechtcherine Viktor, Michel Albert, Liebscher Marco, Schmeier Tobias (2020-06)
    Extrusion-Based Additive Manufacturing with Carbon Reinforced Concrete:
    Concept and Feasibility Study
  72. Mechtcherine Viktor, Michel Albert, Liebscher Marco, Schneider Kai et al. (2019-11)
    Mineral-Impregnated Carbon-Fiber Composites as Novel Reinforcement for Concrete Construction:
    Material and Automation Perspectives
  73. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  74. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-07)
    Buildability of Geopolymer Concrete for 3D Printing with Microwave-Heating
  75. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
    Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing
  76. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2021-06)
    Technologies for Improving Buildability in 3D Concrete Printing
  77. Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman et al. (2019-01)
    Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing
  78. Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
    A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders
  79. Nair Sooraj, Panda Subhashree, Tripathi Avinaya, Neithalath Narayanan (2021-06)
    Relating Print-Velocity and Extrusion-Characteristics of 3D Printable Cementitious Binders:
    Implications Towards Testing Methods
  80. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2021-09)
    Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams
  81. Neef Tobias, Müller Steffen, Mechtcherine Viktor (2020-11)
    3D Printing with Carbon Concrete:
    Technology and the First Test Results
  82. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  83. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  84. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  85. Panda Biranchi, Sonat Cem, Yang En-Hua, Tan Ming et al. (2020-12)
    Use of Magnesium-Silicate-Hydrate (M-S-H) Cement Mixes in 3D Printing Applications
  86. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  87. Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
    Nailing of Layers:
    A Promising Way to Reinforce Concrete 3D Printing Structures
  88. Perrot Arnaud, Mélinge Yannick, Estellé Patrice, Lanos Christophe (2009-04)
    Vibro-Extrusion:
    A New Forming Process for Cement-Based Materials
  89. Perrot Arnaud, Mélinge Yannick, Rangeard Damien, Micaelli Francesca et al. (2012-06)
    Use of Ram Extruder as a Combined Rheo-Tribometer to Study the Behavior of High-Yield-Stress Fluids at Low Strain-Rate
  90. Perrot Arnaud, Rangeard Damien, Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Extrusion of Cement-Based Materials:
    An Overview
  91. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  92. Putten Jolien, Schutter Geert, Tittelboom Kim (2019-07)
    Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials
  93. Putten Jolien, Schutter Geert, Tittelboom Kim (2018-09)
    The Effect of Print Parameters on the (Micro)structure of 3D Printed Cementitious Materials
  94. Ramakrishnan Sayanthan, Muthukrishnan Shravan, Sanjayan Jay, Pasupathy Kirubajiny (2021-08)
    Concrete 3D Printing of Lightweight Elements Using Hollow-Core Extrusion of Filaments
  95. Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2022-02)
    Extrusion-Process-Simulation and Layer-Shape-Prediction During 3D Concrete Printing Using the Particle-Finite-Element-Method
  96. Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
    Setting-on-Demand for Digital Concrete:
    Principles, Measurements, Chemistry, Validation
  97. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  98. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  99. Sanjayan Jay, Jayathilakage Roshan, Rajeev Pathmanathan (2020-11)
    Vibration-Induced Active Rheology-Control for 3D Concrete Printing
  100. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  101. Schutter Geert, Feys Dimitri (2016-11)
    Pumping of Fresh Concrete:
    Insights and Challenges
  102. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
    A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar
  103. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
    3D Printed Concrete for Large-Scale Buildings:
    An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects
  104. Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
    Elastic Buckling and Plastic Collapse During 3D Concrete Printing
  105. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Tittelboom Kim et al. (2021-11)
    Mechanical and Microstructural Properties of 3D Printable Concrete in the Context of the Twin-Pipe Pumping-Strategy
  106. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
    Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
    Possibilities and Challenges
  107. Tiryaki Mehmet, Zhang Xu, Pham Quang-Cuong (2019-11)
    Printing-While-Moving:
    A New Paradigm for Large-Scale Robotic 3D Printing
  108. Vaitkevičius Vitoldas, Šerelis Evaldas, Kerševičius Vidas (2018-03)
    Effect of Ultra-Sonic Activation on Early Hydration Process in 3D Concrete Printing Technology
  109. Vallurupalli Kavya, Farzadnia Nima, Khayat Kamal (2021-01)
    Effect of Flow Behavior and Process-Induced Variations on Shape Stability of 3D Printed Elements:
    A Review
  110. Wang Weiqiang, Konstantinidis Nikolaos, Austin Simon, Buswell Richard et al. (2020-07)
    Flexural Behavior of AR-Glass-Textile-Reinforced 3D Printed Concrete Beams
  111. Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
    Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails
  112. Wangler Timothy, Pileggi Rafael, Gürel Şeyma, Flatt Robert (2022-03)
    A Chemical Process Engineering Look at Digital Concrete Processes:
    Critical Step Design, In-Line Mixing, and Scale-Up
  113. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  114. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  115. Weng Yiwei, Li Mingyang, Wong Teck, Tan Ming (2021-01)
    Synchronized Concrete and Bonding-Agent-Deposition-System for Inter-Layer Bond Strength Enhancement in 3D Concrete Printing
  116. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  117. Wolfs Robert, Bos Freek, Strien Emiel, Salet Theo (2017-06)
    A Real-Time Height Measurement and Feedback System for 3D Concrete Printing
  118. Wolfs Robert, Salet Theo, Roussel Nicolas (2021-10)
    Filament-Geometry-Control in Extrusion-Based Additive Manufacturing of Concrete:
    The Good, the Bad and the Ugly
  119. Xu Jie, Ding Lieyun, Cai Lixiong, Zhang Lichao et al. (2019-04)
    Volume-Forming 3D Concrete Printing Using a Variable-Size Square Nozzle
  120. Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
    A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar
  121. Zareiyan Babak, Khoshnevis Behrokh (2017-08)
    Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
  122. Zhang Xu, Li Mingyang, Lim Jian, Weng Yiwei et al. (2018-08)
    Large-Scale 3D Printing by a Team of Mobile Robots
  123. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review

14 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Rojas Jorge, Hasanzadeh Sogand (2025-12)
    A Unified Workflow for Enhanced Efficiency in 3D Concrete Printing Using a 6 DoF Robotic Arm
  3. Ozturk Onur, Lunsford Caleb, Strait James, Nair Sriramya (2025-08)
    Breaking Barriers in Underwater Construction:
    A Two-Stage 3D Printing System with On-Demand Material Adaptation
  4. Mostert Jean-Pierre, Kruger Jacques (2025-06)
    Improving Shear and Flexural Performance of Macroscale 3D Printed Concrete Beams Through Filament Interlocking
  5. Perrot Arnaud, Jacquet Yohan (2025-01)
    3D Concrete Printing by Extrusion and Filament-Deposition
  6. Perrot Arnaud, Jacquet Yohan, Amziane Sofiane (2025-01)
    3D Concrete Printing
  7. Subramaniam Kolluru, Paritala Spandana, Kulkarni Omkar, Thakur Manideep (2024-09)
    Fracture in 3D Printed Concrete Beams:
    Deflection and Penetration of Impinging Cracks at Layer Interfaces
  8. Parrott Brian, Coronado Preciado Angelica, Feron Eric (2024-07)
    Selective Sheet-Extrusion:
    A Novel Manufacturing-Process for Large-Format Material-Extrusion
  9. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  10. Mechtcherine Viktor, Kuhn Alexander, Mai (née Dressler) Inka, Nerella Venkatesh et al. (2024-03)
    Additive Manufacturing with Concrete:
    Guidelines for Planning and Implementing Projects
  11. Ahi Oğulcan, Ertunç Özgür, Bundur Zeynep, Bebek Özkan (2024-02)
    Automated Flow-Rate-Control of Extrusion for 3D Concrete Printing Incorporating Rheological Parameters
  12. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2023-11)
    Constitutive Response and Failure Progression in Digitally Fabricated 3D Printed Concrete Under Compression and Their Dependence on Print Layer-Height
  13. Placzek Gerrit, Schwerdtner Patrick (2023-07)
    Concrete Additive Manufacturing in Construction:
    Integration Based on Component-Related Fabrication-Strategies
  14. McCoy Andrew, Vieira Manuel, Oliveira Miguel, Yanamala Akhileswar et al. (2023-07)
    3D Concrete Printing:
    Factors Affecting the US and Portugal

BibTeX
@article{chen_zhan_chen_li.2023.ARotESDfLSEB3CP,
  author            = "Hao Chen and Daobo Zhang and Peng Chen and Ning Li and Arnaud Perrot",
  title             = "A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing",
  doi               = "10.3390/ma16072661",
  year              = "2023",
  journal           = "Materials",
  volume            = "16",
  number            = "7",
}
Formatted Citation

H. Chen, D. Zhang, P. Chen, N. Li and A. Perrot, “A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing”, Materials, vol. 16, no. 7, 2023, doi: 10.3390/ma16072661.

Chen, Hao, Daobo Zhang, Peng Chen, Ning Li, and Arnaud Perrot. “A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing”. Materials 16, no. 7 (2023). https://doi.org/10.3390/ma16072661.