Skip to content

Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing (2017-02)

10.1016/j.conbuildmat.2017.02.037

 Shakor Pshtiwan,  Sanjayan Jay,  Nazari Ali,  Nejadi Shami
Journal Article - Construction and Building Materials, Vol. 138, pp. 398-409

Abstract

Additive manufacturing is a common technique used to produce 3D printed structures. These techniques have been used as precise application geometry in different fields such as architecture and medicine, and the food, mechanics and chemical industries. However, in most cases only a limited amount of powder has been used to fabricate scaffold (structure). In this study, a unique mix of cements (calcium aluminate cement passed through a 150 lm sieve and ordinary Portland cement) was developed for Z-Corporation’s three-dimensional printing (3DP) process. This cement mix was blended and the resulting composite powders were printed with a water-based binder using a Z-Corporation 3D printer. Moreover, some samples were added lithium carbonate to reduce the setting time for the cement mixture. The aims of the study were to firstly, find the proper cementitious powder close to the targeted powder (Z-powder); and secondly, evaluate the mechanical properties of this material. Cubic specimens of two different batches with varying saturation levels were cast and cured in various scenarios to enhance the best mechanical properties. The samples were characterised by porosity analyses, compression tests, Olympus BX61 Microscope imaging, 3D profiling Veeco (Dektak) and the Scanning Electronic Microscope (SEM). The maximum compressive strength of the cubic specimens for cementitious 3DP was 8.26 MPa at the saturation level of 170% for both the shell and core. The minimum porosity obtained was 49.28% at the saturation level of 170% and 340% for the shell and the core, respectively.

8 References

  1. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  2. Gibbons Gregory, Williams Reuben, Purnell Phil, Farahi Elham (2013-07)
    3D Printing of Cement Composites
  3. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  4. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  5. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  6. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  7. Lim Sungwoo, Buswell Richard, Le Thanh, Wackrow Rene et al. (2011-07)
    Development of a Viable Concrete Printing Process
  8. Lloret-Fritschi Ena, Shahab Amir, Linus Mettler, Flatt Robert et al. (2014-03)
    Complex Concrete Structures:
    Merging Existing Casting Techniques with Digital Fabrication

122 Citations

  1. Zhang Xin, Xu Xinglong, Liu Xianda, Sun Junbo et al. (2026-01)
    Enhancing Electromagnetic Wave Absorption in 3D-Printed Concrete with Superabsorbent Polymers for High Performance
  2. Basith Mydeen Pitchai Mohamed Abdul (2025-12)
    Polymer-Enhanced Composites for 3D Concrete Printing:
    A Review of Materials, Processes, and Performance
  3. Meier Niklas, Herding Friedrich, Zetzener Harald, Mai (née Dressler) Inka et al. (2025-11)
    Surface Modification of Bulk Material for Particle Bed 3D Concrete Printing:
    Effect on Wettability, Porosity, and Mechanical Properties
  4. Niu Huaxian, Yu Bo, Hao Ji (2025-10)
    CFD-Based Flow Field Analysis of Spiral Nozzles in 3D Concrete Printing
  5. Mercimek Ömer, Şahin Oğuzhan, Çelik Alper, Ozkan Ekinci Mehmet et al. (2025-08)
    Structural Performance of Pre-Fabricated 3D Printed Concrete Walls:
    Effect of Cold Joint, Axial Load and Load Type
  6. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review
  7. Pour Arash, Farsangi Ehsan, Yang T., Li Shaofan et al. (2025-06)
    3D Printing of Conventional and Geopolymer Concretes:
    Advancements, Challenges, Future Directions, and Cost Analysis
  8. Shi Anqi, Lee Kah, Bo Sun, Koh Weng et al. (2025-06)
    Dimensional Effects on Shear Behaviour of 3D-Printed Concrete Shear Keys
  9. Girskas Giedrius, Kligys Modestas (2025-06)
    3D Concrete Printing Review:
    Equipment, Materials, Mix Design, and Properties
  10. Lin Wenyu, Wang Li, Li Zhijian, Bai Gang et al. (2025-06)
    Multi-Scale Fabrication and Challenges in 3D Printing of Special -Shaped Concrete Structures
  11. Zhang Bo, Corte Wouter, Ooms Ticho, Wan-Wendner Roman (2025-05)
    Mechanical Properties of Particle-Bed 3D Printed Concrete Infill Patterns
  12. Si Qi, Zhang Wenna, Pan Zhihong, Zheng Jianqiang et al. (2025-04)
    Study on the Mechanical and Durability Properties of 3D-Printed Bamboo Fiber-Reinforced Concrete
  13. Nadi Mouad, Majdoubi Hicham, Haddaji Younesse, Bili Oumaima et al. (2025-01)
    Digital Fabrication Processes for Cementitious Materials Using Three-Dimensional 3D Printing Technologies
  14. Elango K., Saravanakumar R., Vivek D., Yuvaraj S. et al. (2025-01)
    A Critical Review of Fresh, Hardened and Durability Properties of 3D Printing Concrete
  15. Liu Junxing, Li Peiqi, Piao Taiyan, Im Sumin et al. (2024-12)
    High-Alumina Cementitious Materials for Binder-Jetting 3D Printing:
    Exploring Suitable Mixing-Ratio and Curing-Solution for Improving Mechanical Properties and Hydration-Reaction
  16. Li Ben, Li Kaihang, Lyu Xuetao, Zhao Canhao et al. (2024-12)
    Microscopic Mechanism and Predicting Calculation on Mechanical Properties of Basalt-Fiber-Modified 3D Printing Cement-Based Materials
  17. Wang Qingwei, Han Song, Yang Junhao, Li Ziang et al. (2024-11)
    Optimizing Printing and Rheological Parameters for 3D Printing with Cementitious Materials
  18. Rehman Saif, Riaz Raja, Usman Muhammad, Kim In-Ho (2024-08)
    Augmented Data-Driven Approach Towards 3D Printed Concrete Mix Prediction
  19. Yang Chao, Xu Xinglong, Lei Zuxiang, Sun Junbo et al. (2024-06)
    Enhancing Mechanical Properties of Three-Dimensional Concrete at Elevated Temperatures Through Recycled Ceramic-Powder Treatment Methods
  20. Shao Yulong, Yang Jingwei, Kim Jineon, Song Jaejoon et al. (2024-05)
    Microscopic Analysis of Mechanical Anisotropy and Damage-Evolution of 3D Printed Rock-Like Samples Under Uniaxial Compressive Tests
  21. Liu Xiongfei, Zhao Xi, Wang Nan, Zhang Yi et al. (2024-05)
    Powder-Based 3D Printed Magnesium Phosphate Cement:
    Mechanical Isotropy Optimization Using Borax
  22. Salari Farid, Zocca Andrea, Bosetti Paolo, Hlaváček Petr et al. (2024-05)
    Powder-Bed 3D Printing by Selective Activation of Magnesium-Phosphate-Cement:
    Determining Significant Processing Parameters and Their Effect on Mechanical Strength
  23. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  24. Wei Ying, Han Song, Chen Ziwei, Lu Jianxian et al. (2024-04)
    Numerical Simulation of 3D Concrete Printing Derived from Printer Head and Printing Process
  25. Shahid Mursaleen, Sglavo Vincenzo (2024-03)
    Binder-Jetting 3D Printing of Binary Cement-Siliceous Sand Mixture
  26. Liu Xiongfei, Wang Nan, Zhang Yi, Ma Guowei (2024-02)
    Optimization of Printing Precision and Mechanical Property for Powder-Based 3D Printed Magnesium Phosphate Cement Using Fly-Ash
  27. Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
    Concrete 3D Printing Technology in Sustainable Construction:
    A Review on Raw Materials, Concrete Types and Performances
  28. Wang Xingjian, Naito Clay, Fox John, Bocchini Paolo (2024-02)
    Impact of Mix Proportions on Particle-Bed 3D Printed Concrete Properties
  29. Dulaj Albanela, Salet Theo, Lucas Sandra (2024-01)
    A Study of the Effects of MWCNTs on the Fresh and Hardened State Properties of 3D Printable Concrete
  30. Panda Biranchi, Shakor Pshtiwan, Laghi Vittoria (2023-12)
    Powder-Bed Additive Manufacturing
  31. Mai (née Dressler) Inka, Herding Friedrich, Lowke Dirk (2023-12)
    Effect of Grain-Size and Layer-Thickness on Hardened State Properties in Selective Cement-Activation
  32. Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
    A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
    Material-Preparation, Construction-Process and Structure-Level
  33. Zhang Xiaowei, Guo Chuwen, Ma Jianhong, Jiao Huazhe et al. (2023-10)
    Utilization of Solid Mine-Waste in the Building Materials for 3D Printing
  34. Genc Gokhan, Demircan Ruya, Beyhan Figen, Kaplan Gökhan (2023-10)
    Assessment of the Sustainability and Producibility of Adobe-Constructions Reinforced with Ca-Based Binders:
    Environmental Life-Cycle-Analysis and 3D Printability
  35. Mallikarjuna Balichakra, Hareeswar M., Sharath P. (2023-09)
    Applications of Additive Manufacturing in Construction and Building Industries
  36. Jacquet Yohan, Perrot Arnaud (2023-07)
    Sewing Concrete Device:
    Combining In-Line Rheology-Control and Reinforcement-System for 3D Concrete Printing
  37. Ambily Parukutty, Kaliyavaradhan Senthil, Rajendran Neeraja (2023-05)
    Top Challenges to Widespread 3D Concrete Printing Adoption:
    A Review
  38. Wang Li, Ye Kehan, Wan Qian, Li Zhijian et al. (2023-05)
    Inclined 3D Concrete Printing:
    Build-Up Prediction and Early-Age Performance-Optimization
  39. Rekhi Jagruti, Stern Alaina (2023-04)
    3D Concrete Printed Construction:
    Building the Future of Housing, Layer-by-Layer
  40. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Gowripalan Nadarajah (2023-04)
    Effects of Different Orientation-Angle, Size, Surface-Roughness, and Heat-Curing on Mechanical Behavior of 3D Printed Cement-Mortar with and without Glass-Fiber in Powder-Based 3DP
  41. Fonseca Mariana, Matos Ana (2023-03)
    3D Construction Printing Standing for Sustainability and Circularity:
    Material-Level Opportunities
  42. Quah Tan, Tay Yi, Lim Jian, Tan Ming et al. (2023-03)
    Concrete 3D Printing:
    Process-Parameters for Process-Control, Monitoring and Diagnosis in Automation and Construction
  43. Tao Yaxin, Lesage Karel, Tittelboom Kim, Yuan Yong et al. (2023-03)
    Twin-Pipe Pumping-Strategy for Stiffening-Control of 3D Printable Concrete:
    From Transportation to Fabrication
  44. Talke Daniel, Saile Bettina, Meier Niklas, Herding Friedrich et al. (2023-03)
    Particle-Bed 3D Printing by Selective Cement-Activation:
    Influence of Process Parameters on Particle-Bed Density
  45. Cui Dong, Wu Yingxuan, Xie Xiaoying, Tian Guanfei et al. (2023-03)
    Investigation on the Micro-Structure of a 3D Printed Mortar Through a Novel Leaching-Subsidiary Tomography
  46. Ma Guowei, Hu Tingyu, Wang Fang, Liu Xiongfei et al. (2023-02)
    Magnesium Phosphate Cement for Powder-Based 3D Concrete Printing:
    Systematic Evaluation and Optimization of Printability and Printing Quality
  47. Bazli Milad, Ashrafi Hamed, Rajabipour Ali, Kutay Cat (2023-02)
    3D Printing for Remote Housing:
    Benefits and Challenges
  48. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  49. Lootens Didier (2023-01)
    Giving Shape and Functionality to the Matter:
    Digital Construction
  50. Chun Seung-Yeop, Kim Su-jin, Kim Woon-Gi, Lee Geumyeon et al. (2022-12)
    Powder-Bed-Based 3D Printing with Cement for Sustainable Casting
  51. Peng Yiming, Unluer Cise (2022-12)
    Development of Alternative Cementitious Binders for 3D Printing Applications:
    A Critical Review of Progress, Advantages and Challenges
  52. Demiral Nazim, Ozkan Ekinci Mehmet, Şahin Oğuzhan, İlcan Hüseyin et al. (2022-10)
    Mechanical Anisotropy Evaluation and Bonding Properties of 3D Printable Construction and Demolition Waste-Based Geopolymer Mortars
  53. Mortada Youssef, Mohammad Malek, Mansoor Bilal, Grasley Zachary et al. (2022-09)
    Development of Test-Methods to Evaluate the Printability of Concrete Materials for Additive Manufacturing
  54. Khosravani Mohammad, Haghighi Azadeh (2022-08)
    Large-Scale Automated Additive Construction:
    Overview, Robotic Solutions, Sustainability, and Future Prospect
  55. Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
    A Review of Large-Scale 3DCP:
    Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies
  56. Bi Minghao, Tran Jonathan, Xia Lingwei, Ma Guowei et al. (2022-06)
    Topology-Optimization for 3D Concrete Printing with Various Manufacturing-Constraints
  57. Weger Daniel, Talke Daniel, Lowke Dirk, Henke Klaudius et al. (2022-06)
    Additive Manufacturing of Free-Formed Concrete Elements by Selective Binding with Calcium Silicate-Based Cements
  58. Danish Aamar, Khurshid Kiran, Mosaberpanah Mohammad, Ozbakkaloglu Togay et al. (2022-06)
    Micro-Structural Characterization, Driving Mechanisms, and Improvement-Strategies for Inter-Layer Bond Strength of Additive Manufactured Cementitious Composites:
    A Review
  59. Barbosa Marcella, Anjos Marcos, Cabral Kleber, Souza Dias Leonardo (2022-05)
    Development of Composites for 3D Printing with Reduced Cement Consumption
  60. Mo Yixin, Xing Jianchun, Yue Songlin, Zhang Yamei et al. (2022-04)
    Dynamic Properties of 3D Printed Cement Mortar Based on Split Hopkinson Pressure Bar Testing
  61. Mai (née Dressler) Inka, Lowke Dirk, Perrot Arnaud (2022-03)
    Fluid-Intrusion in Powder-Beds for Selective Cement-Activation:
    An Experimental and Analytical Study
  62. Sayegh Sameh, Romdhane Lotfi, Manjikian Solair (2022-03)
    A Critical Review of 3D Printing in Construction:
    Benefits, Challenges, and Risks
  63. Lowke Dirk, Mai (née Dressler) Inka, Keita Emmanuel, Perrot Arnaud et al. (2022-02)
    Material-Process Interactions in Particle-Bed 3D Printing and the Underlying Physics
  64. Shakor Pshtiwan, Chu Shaohua, Puzatova (nee Sharanova) Anastasiia, Dini Enrico (2022-01)
    Review of Binder-Jetting 3D Printing in the Construction Industry
  65. Putten Jolien, Nerella Venkatesh, Mechtcherine Viktor, Hondt Mélody et al. (2022-01)
    Properties and Testing of Printed Cement-Based Materials in Hardened State
  66. Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
    3D Printable Alkali-Activated Concretes for Building Applications:
    A Critical Review
  67. Min Kyung-Sung, Park Kwang-Min, Lee Bong-Chun, Roh Young-Sook (2021-12)
    Chloride Diffusion by Build Orientation of Cementitious Material-Based Binder-Jetting 3D Printing Mortar
  68. Tao Yaxin, Lesage Karel, Tittelboom Kim, Yuan Yong et al. (2021-11)
    Influence of Substrate-Surface-Roughness and Moisture-Content on Tensile Adhesion Performance of 3D Printable Concrete
  69. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
    Role of Chemical Admixtures on 3D Printed Portland Cement:
    Assessing Rheology and Buildability
  70. Lyu Fuyan, Zhao Dongliang, Hou Xiaohui, Sun Li et al. (2021-10)
    Overview of the Development of 3D Printing Concrete:
    A Review
  71. Rollakanti Chiranjeevi, Prasad C., Joe Adams (2021-10)
    Digital Concrete for Sustainable Construction Industry:
    A State of the Art Review
  72. Bedarf Patrick, Dutto Alessandro, Zanini Michele, Dillenburger Benjamin (2021-08)
    Foam 3D Printing for Construction:
    A Review of Applications, Materials, and Processes
  73. Zhao Zhihui, Chen Mingxu, Zhong Xu, Huang Yongbo et al. (2021-07)
    Effects of Bentonite, Diatomite and Metakaolin on the Rheological Behavior of 3D Printed Magnesium-Potassium-Phosphate-Cement Composites
  74. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  75. Li Hui, Meng Huamin, Lan Mingzhang, Zhou Jian et al. (2021-05)
    Development of a Novel Material and Casting-Method for In-Situ Construction on Mars
  76. Na Okpin, Kim Kangmin, Lee Hyunjoo, Lee Hyunseung (2021-05)
    Printability and Setting-Time of CSA Cement with Na2SiO3 and Gypsum for Binder-Jetting 3D Printing
  77. Pan Yifan, Zhang Yulu, Zhang Dakang, Song Yuying (2021-05)
    3D Printing in Construction:
    State of the Art and Applications
  78. Chang Ze, Xu Yading, Chen Yu, Gan Yidong et al. (2021-05)
    A Discrete Lattice-Model for Assessment of Buildability Performance of 3D Printed Concrete
  79. Ning Xin, Liu Tong, Wu Chunlin, Wang Chao (2021-04)
    3D Printing in Construction:
    Current Status, Implementation Hindrances, and Development Agenda
  80. Katzer Jacek, Skoratko Aneta (2021-03)
    Concept of Using 3D Printing for Production of Concrete-Plastic Columns with Unconventional Cross-Sections
  81. Pessoa Ana Sofia, Guimarães Ana, Lucas Sandra, Simões Nuno (2021-02)
    3D Printing in the Construction Industry:
    A Systematic Review of the Thermal Performance in Buildings
  82. Weger Daniel, Gehlen Christoph (2021-01)
    Particle-Bed Binding by Selective Paste-Intrusion:
    Strength and Durability of Printed Fine-Grain Concrete Members
  83. Vallurupalli Kavya, Farzadnia Nima, Khayat Kamal (2021-01)
    Effect of Flow Behavior and Process-Induced Variations on Shape Stability of 3D Printed Elements:
    A Review
  84. Weger Daniel, Pierre Alexandre, Perrot Arnaud, Kränkel Thomas et al. (2021-01)
    Penetration of Cement-Pastes into Particle-Beds:
    A Comparison of Penetration Models
  85. Plessis Anton, Babafemi Adewumi, Paul Suvash, Panda Biranchi et al. (2020-12)
    Biomimicry for 3D Concrete Printing:
    A Review and Perspective
  86. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  87. Singh P., Sreerag K. (2020-12)
    Additive Manufacturing Through Digital Concrete by Extrusion- and Non-Extrusion-Method
  88. Pierre Alexandre, Weger Daniel, Perrot Arnaud, Lowke Dirk (2020-11)
    Additive Manufacturing of Cementitious Materials by Selective Paste-Intrusion:
    Numerical Modeling of the Flow Using a 2D-Axisymmetric Phase-Field-Method
  89. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  90. Shakor Pshtiwan, Nejadi Shami, Gowripalan Nadarajah (2020-07)
    Effect of Heat-Curing and E6-Glass Fiber-Reinforcement Addition on Powder-Based 3DP Cement Mortar
  91. Tao Yaxin, Lesage Karel, Tittelboom Kim, Yuan Yong et al. (2020-07)
    Effect of Limestone-Powder Substitution on Fresh and Hardened Properties of 3D Printable Mortar
  92. Yuan Qiang, Zhou Dajun, Huang Hai, Peng Jianwei et al. (2020-06)
    Structural Build-Up, Hydration and Strength Development of Cement-Based Materials with Accelerators
  93. Lowke Dirk, Talke Daniel, Mai (née Dressler) Inka, Weger Daniel et al. (2020-05)
    Particle-Bed 3D Printing by Selective Cement-Activation:
    Applications, Material and Process Technology
  94. Assaad Joseph, Hamzeh Farook, Hamad Bilal (2020-05)
    Qualitative Assessment of Interfacial Bonding in 3D Printing Concrete Exposed to Frost-Attack
  95. Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
    3D Printing of Concrete:
    Beyond Horizons
  96. Jo Jun, Jo Byung, Cho Woohyun, Kim Jung-Hoon (2020-03)
    Development of a 3D Printer for Concrete Structures:
    Laboratory Testing of Cementitious Materials
  97. Siddika Ayesha, Mamun Md., Ferdous Wahid, Saha Ashish et al. (2019-12)
    3D Printed Concrete:
    Applications, Performance, and Challenges
  98. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Sanjayan Jay (2019-12)
    Dimensional Accuracy, Flowability, Wettability, and Porosity in Inkjet 3DP for Gypsum and Cement Mortar Materials
  99. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-12)
    Evaluation of the Mechanical Properties of a 3D Printed Mortar
  100. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-11)
    Investigation into the Effect of Delays Between Printed Layers on the Mechanical Strength of Inkjet 3DP Mortar
  101. Korniejenko Kinga, Łach Michał, Chou S., Lin Wei-Ting et al. (2019-11)
    A Comparative Study of Mechanical Properties of Fly-Ash-Based Geopolymer Made by Casted and 3D Printing Methods
  102. Paolini Alexander, Kollmannsberger Stefan, Rank Ernst (2019-10)
    Additive Manufacturing in Construction:
    A Review on Processes, Applications, and Digital Planning Methods
  103. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-08)
    Correlation Between Pore Characteristics and Tensile Bond Strength of Additive Manufactured Mortar Using X-Ray Computed Tomography
  104. Bhardwaj Abhinav, Jones Scott, Kalantar Negar, Pei Zhijian et al. (2019-06)
    Additive Manufacturing Processes for Infrastructure Construction:
    A Review
  105. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
    A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar
  106. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
    An Investigation into the Effects of Deposition-Orientation of Material on the Mechanical Behavior of the Cementitious Powder and Gypsum-Powder in Inkjet 3D Printing
  107. Perrot Arnaud, Amziane Sofiane (2019-04)
    3D Printing in Concrete:
    General Considerations and Technologies
  108. Pierre Alexandre, Perrot Arnaud (2019-04)
    3D Printing by Selective Binding in a Particle-Bed:
    Principles and Challenges
  109. Sonebi Mohammed, Amziane Sofiane, Perrot Arnaud (2019-04)
    Mechanical Behavior of 3D Printed Cement Materials
  110. Craveiro Flávio, Duarte José, Bártolo Helena, Bartolo Paulo (2019-04)
    Additive Manufacturing as an Enabling Technology for Digital Construction:
    A Perspective on Construction 4.0
  111. Zuo Zibo, Gong Jian, Huang Yulin, Zhan Yijian et al. (2019-03)
    Experimental Research on Transition from Scale 3D Printing to Full-Size Printing in Construction
  112. Ingaglio Joseph, Fox John, Naito Clay, Bocchini Paolo (2019-02)
    Material-Characteristics of Binder-Jet 3D Printed Hydrated CSA Cement with the Addition of Fine Aggregates
  113. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  114. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Malek Sardar (2019-01)
    Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry
  115. Chen Mingxu, Guo Xiangyang, Zheng Yan, Li Laibo et al. (2018-11)
    Effect of Tartaric Acid on the Printable, Rheological and Mechanical Properties of 3D Printing Sulphoaluminate Cement-Paste
  116. Moini Mohamadreza, Olek Jan, Youngblood Jeffrey, Magee Bryan et al. (2018-08)
    Additive Manufacturing and Performance of Architectured Cement-Based Materials
  117. Zhang Xu, Li Mingyang, Lim Jian, Weng Yiwei et al. (2018-08)
    Large-Scale 3D Printing by a Team of Mobile Robots
  118. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  119. Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
    Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing
  120. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  121. Chen Yu, Çopuroğlu Oğuzhan, Veer Frederic (2018-01)
    A Critical Review of 3D Concrete Printing as a Low-CO2 Concrete Approach
  122. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing

BibTeX
@article{shak_sanj_naza_neja.2017.M3PPtCBMaMPoCSUi3P,
  author            = "Pshtiwan N. Shakor and Jay Gnananandan Sanjayan and Ali Nazari and Shami Nejadi",
  title             = "Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing",
  doi               = "10.1016/j.conbuildmat.2017.02.037",
  year              = "2017",
  journal           = "Construction and Building Materials",
  volume            = "138",
  pages             = "398--409",
}
Formatted Citation

P. N. Shakor, J. G. Sanjayan, A. Nazari and S. Nejadi, “Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing”, Construction and Building Materials, vol. 138, pp. 398–409, 2017, doi: 10.1016/j.conbuildmat.2017.02.037.

Shakor, Pshtiwan N., Jay Gnananandan Sanjayan, Ali Nazari, and Shami Nejadi. “Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing”. Construction and Building Materials 138 (2017): 398–409. https://doi.org/10.1016/j.conbuildmat.2017.02.037.