Skip to content

Bond Behavior Between Steel-Bars and 3D Printed Concrete (2022-08)

Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating

10.1016/j.conbuildmat.2022.128708

Wang Zhibin, Jia Lutao, Deng Zhicong,  Zhang Chao, Zhang Zedi, Chen Chun,  Pan Jinlong,  Zhang Yamei
Journal Article - Construction and Building Materials, Vol. 349

Abstract

Due to the unique layer by layer deposition process of extrusion-based 3D printed concrete (3DPC), the bonding of steel bars with 3DPC differs from that with traditional cast concrete. To understand the steel-printed concrete bond behavior, this paper mainly explored the effect of preparation technologies, concrete rheological properties, steel bar diameter and paste coating on steel bars on the bond behavior between ribbed steel bars and concrete. According to pull-out test and X-ray computed tomography test, the results showed that bond strengths between 3DPC and steel bars were obviously lower than those between steel bars and cast concrete. The rheological properties of fresh concrete show significant impact on the bond behavior of reinforced 3D printed samples. Lower yield stress and plastic viscosity can narrow the bond strength gap between printed samples and cast samples. The utilization of surface coated steel bar with fresh cement paste can effectively enhance the steel-3DPC bond strength. The variations in steel–concrete bond strengths can be explained via pore structure at steel–concrete interface. The results suggest that it is of great importance to control the quality of reinforced 3D printed concrete by optimizing the rheological properties of fresh concrete for 3D printing.

36 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  2. Baz Bilal, Aouad Georges, Leblond Philippe, Mansouri Omar et al. (2020-05)
    Mechanical Assessment of Concrete:
    Steel Bonding in 3D Printed Elements
  3. Baz Bilal, Aouad Georges, Rémond Sébastien (2020-01)
    Effect of the Printing Method and Mortar’s Workability on Pull-Out Strength of 3D Printed Elements
  4. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  5. Ding Tao, Qin Fei, Xiao Jianzhuang, Chen Xiaoming et al. (2022-01)
    Experimental Study on the Bond Behavior Between Steel-Bars and 3D Printed Concrete
  6. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  7. Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
    Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing
  8. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  9. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  10. Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
    Buildability and Mechanical Properties of 3D Printed Concrete
  11. Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
    Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
    Measurement and Physical Origin
  12. Ketel Sabrina, Falzone Gabriel, Wang Bu, Washburn Newell et al. (2018-04)
    A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D Printed Components
  13. Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
    Development of the Construction Processes for Reinforced Additively Constructed Concrete
  14. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  15. Liu Chenkang, Yue Songlin, Zhou Cong, Sun Honglei et al. (2021-08)
    Anisotropic Mechanical Properties of Extrusion-Based 3D Printed Layered Concrete
  16. Liu Miao, Zhang Qiyun, Tan Zhendong, Wang Li et al. (2021-01)
    Investigation of Steel-Wire-Mesh-Reinforcement Method for 3D Concrete Printing
  17. Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
    Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing
  18. Ma Lei, Zhang Qing, Jia Zijian, Liu Chao et al. (2021-11)
    Effect of Drying Environment on Mechanical Properties, Internal RH and Pore-Structure of 3D Printed Concrete
  19. Marchment Taylor, Sanjayan Jay (2020-09)
    Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing
  20. Marchment Taylor, Sanjayan Jay (2019-10)
    Mesh Reinforcing Method for 3D Concrete Printing
  21. Marchment Taylor, Sanjayan Jay (2021-04)
    Reinforcement Method for 3D Concrete Printing Using Paste-Coated Bar Penetrations
  22. Neef Tobias, Müller Steffen, Mechtcherine Viktor (2020-11)
    3D Printing with Carbon Concrete:
    Technology and the First Test Results
  23. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  24. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  25. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  26. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  27. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  28. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  29. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction
  30. Tay Yi, Lim Jian, Li Mingyang, Tan Ming (2022-03)
    Creating Functionally Graded Concrete Materials with Varying 3D Printing Parameters
  31. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  32. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  33. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  34. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  35. Zhang Hongping, Wang Jianhong, Liu Yaling, Zhang Xiaoshuang et al. (2021-11)
    Effect of Processing Parameters on the Printing Quality of 3D Printed Composite Cement-Based Materials
  36. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink

31 Citations

  1. Liu Chao, Chen Xianqin, Luo Zhiyu, Liu Huawei et al. (2026-01)
    Effects of Pore Defects on Interfacial Bonding Between Rebar and 3D Printed Coarse Aggregate Concrete Under Multiple Loading Conditions
  2. Agegn Adamu, Regassa Yohannes, Angassa Kenatu, Mekonnen Kebede (2026-01)
    Systematic Review on 3D Concrete Printing Technology:
    Breakthroughs and Challenges
  3. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  4. Wang Xiangyu, Wang Sizhe, Deng North, Liu Zhenbang et al. (2026-01)
    Robotic Rebar Insertion and Grouting for Reinforcement of 3D Printed Concrete:
    Technique Development and Bond Behavior Characterization
  5. Cui Xiaoshuang, Pu Xianghao, Zhang Dongyang, Li Weihong et al. (2025-12)
    Study on the Mechanical Properties of 3D-Printed Continuous Jute Yarn-Reinforced Concrete
  6. Si Wen, Khan Mehran, McNally Ciaran (2025-11)
    Rheological Optimization and Mechanical Performance Assessment of High-Volume GGBS-Silica Fume Mortars for 3D Printing
  7. Syed Sajid, Abid Khasim, Khan Majid (2025-09)
    An Interpretable Machine Learning Approach for Predicting Reinforcement Bond Performance in 3D Concrete Printing
  8. Sagyntay Mukhagali, Storch Florian, Mustafa Azamat, Plaschnick Paul et al. (2025-06)
    Automated Production of 3D Printed Сoncrete Structures with Integrated Reinforcement Mesh Based on Standard Reinforcement Bars
  9. Jalil Siti Nur Natasha Abdul, Rizal Alias Ahmad, Alias Aizat (2025-06)
    Challenges and Strategies in Implementing 3D Concrete Printing (3DCP) Technology in Malaysia:
    Materials and Design Codes
  10. Mostert Jean-Pierre, Kruger Jacques (2025-06)
    Improving Shear and Flexural Performance of Macroscale 3D Printed Concrete Beams Through Filament Interlocking
  11. Yao Jiaxu, Luo Jie, Qiu Minghong, Nagai Kohei (2025-06)
    Mesoscale Modeling of Anisotropic Compressive Behavior and Pull-Out Performance of 3D Printed Concrete with Steel Bars Using 3D RBSM
  12. Liu Qiong, Singh Amardeep, Wang Qiming, Qifeng Lyu (2025-05)
    3D-Printed Application in Concretes
  13. Liu Qiong, Wang Qiming, Sun Chang, Singh Amardeep et al. (2025-04)
    Compressive Performance and Damage Evolution of Concrete Short Columns with Shell-Filling Structure Confined by Continuous Fiber Reinforced 3D Printed Mortar
  14. Wang Qiang, Yang Wenwei, Wang Li, Bai Gang et al. (2025-03)
    Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams
  15. Zeng Jun-Jie, Sun Hou-Qi, Deng Run-Bin, Yan Zitong et al. (2025-02)
    Bond Performance Between FRP-Bars and 3D-Printed High-Performance Concrete
  16. Chen Meng, Yu Kanghao, Zhang Tong, Wang Yuting (2025-01)
    Characterizing and Modelling the Bond-Slip-Behavior of Steel-Bars in 3D Printed Engineered Cementitious Composites
  17. Hassan Amer, Alomayri Thamer, Noaman Mohammed, Zhang Chunwei (2025-01)
    3D Printed Concrete for Sustainable Construction:
    A Review of Mechanical Properties and Environmental Impact
  18. Nan Bo, Qiao Youxin, Leng Junjie, Bai Yikui (2025-01)
    Advancing Structural Reinforcement in 3D Printed Concrete:
    Current Methods, Challenges, and Innovations
  19. Luo Surong, Jin Wenhao, Wu Weihong, Zhang Kaijian (2024-11)
    Rheological and Mechanical Properties of Polyformaldehyde-Fiber-Reinforced 3D Printed High-Strength Concrete with the Addition of Fly-Ash
  20. Liu Chao, Zhang Yukun, Liu Huawei, Wu Yiwen et al. (2024-10)
    Inter-Layer Reinforced 3D Printed Concrete with Recycled Coarse Aggregate:
    Shear Properties and Enhancement Methods
  21. Lin Yini, Yan Jiachuan, Sun Ming, Han Xiaoyu et al. (2024-10)
    Inter-Layer Cohesion in 3D Printed Concrete:
    The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure
  22. Lan Tian, Yang Shutong, Xu Mingqi, Chen Zhengyuan et al. (2024-10)
    Quantitative Assessment of Interfacial-Fracture-Properties in 3D Printed Alkali-Activated Recycled Sand Concrete Based on a Closed-Form Fracture-Model
  23. Ma Xin-Rui, Wang Xian-Lin, Chen Shi-Zi (2024-09)
    Trustworthy Machine Learning-Enhanced 3D Concrete Printing:
    Predicting Bond Strength and Designing Reinforcement Embedment Length
  24. Ahmed Hassan, Giwa Ilerioluwa, Game Daniel, Arce Gabriel et al. (2024-04)
    Automated Reinforcement During Large-Scale Additive Manufacturing:
    Structural-Assessment of a Dual Approach
  25. Haar Bjorn, Kruger Jacques, Zijl Gideon (2024-04)
    Off-Site 3D Printed Concrete Beam Design and Fabrication
  26. Liu Qiong, Cheng Shengbo, Peng Bin, Chen Kailun et al. (2024-01)
    The Buildability and Flexural Properties of 3D Printed Recycled Mortar Reinforced with Synchronized Steel-Cable Under Different Reinforcement Ratios
  27. Liu Huawei, Liu Chao, Zhang Yamei, Bai Guoliang (2023-11)
    Bonding Properties Between 3D Printed Coarse Aggregate Concrete and Rebar Based on Interface Structural Characteristics
  28. Wang Xianlin, Banthia Nemkumar, Yoo Doo-Yeol (2023-11)
    Reinforcement Bond Performance in 3D Concrete Printing:
    Explainable Ensemble Learning Augmented by Deep Generative Adversarial Networks
  29. Liu Qiong, Cheng Shengbo, Sun Chang, Chen Kailun et al. (2023-11)
    Steel-Cable Bonding in Fresh Mortar and 3D Printed Beam Flexural Behavior
  30. Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-10)
    Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers
  31. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review

BibTeX
@article{wang_jia_deng_zhan.2022.BBBSBa3PC,
  author            = "Zhibin Wang and Lutao Jia and Zhicong Deng and Chao Zhang and Zedi Zhang and Chun Chen and Jinlong Pan and Yamei Zhang",
  title             = "Bond Behavior Between Steel-Bars and 3D Printed Concrete: Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating",
  doi               = "10.1016/j.conbuildmat.2022.128708",
  year              = "2022",
  journal           = "Construction and Building Materials",
  volume            = "349",
}
Formatted Citation

Z. Wang, “Bond Behavior Between Steel-Bars and 3D Printed Concrete: Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating”, Construction and Building Materials, vol. 349, 2022, doi: 10.1016/j.conbuildmat.2022.128708.

Wang, Zhibin, Lutao Jia, Zhicong Deng, Chao Zhang, Zedi Zhang, Chun Chen, Jinlong Pan, and Yamei Zhang. “Bond Behavior Between Steel-Bars and 3D Printed Concrete: Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating”. Construction and Building Materials 349 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128708.