Skip to content

Strain-Based Approach for Measuring Structural Build-Up of Cement-Pastes in the Context of Digital Construction (2018-11)

10.1016/j.cemconres.2018.08.003

 Nerella Venkatesh,  Beigh Mirza,  Fataei Shirin,  Mechtcherine Viktor
Journal Article - Cement and Concrete Research, Vol. 115, pp. 530-544

Abstract

As a first step toward characterising structural build-up of high-strength, printable concrete mixes, the structural build-up of cement pastes of varying compositions and rheological properties is investigated. It is demonstrated that applying low shear rates over short measurement periods does not always result in the achievement of flow-onset in stiffer cementitious materials, commonly used in digital construction. For such materials, a characteristic delay exists before the effective shear rate reaches the applied shear rate. This leads to effective strains in the materials tested and consequently to the erroneous characterisation of structural build-up. A strain-based approach is suggested here as a more appropriate method for characterising structural build-up in the case of stiff materials. Maintaining a low, constant shear rate among various measurements is not necessary if the total effective strain is kept constant. Investigations on pastes with different compositions show that pastes in which a portion of the cement was replaced with micro-silica and fly ash exhibited high structuration rate. The use of secondary cementitious materials (SCM) appears to be similarly appropriate measure to make cementitious materials ‘printable’ when compared to using set-accelerators, in the absence of inline mixing of accelerators in the printhead.

4 References

  1. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  2. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  3. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  4. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing

89 Citations

  1. Mani Aravindhraj, Sekar Muthu (2025-11)
    Extrudability in 3D Printing:
    A Comprehensive Approach to S/C, W/C Ratios and Superplasticizer Content
  2. Liu Junli, Zhang Shipeng, Hao Lucen, Wu Bo et al. (2025-10)
    Rapid Rheology Control and Stiffening of 3D-Printed Cement Mortar via CO2 Flash Mixing in a 2K Printing System
  3. Sabouni Reem, Martini Samer (2025-09)
    Characterization of 3D Printed Concrete Mixtures Developed Using Local UAE Materials Based on Rheological Properties
  4. Disu Oluwatimilehin, Ismail Sikiru, Wood Luke, Chrysanthou Andreas et al. (2025-08)
    Experimental Study on Buildability of 3D-Printed Cement-Based Structures Using Aluminium Sulphate
  5. Zhang Bo, Tao Yaxin, Zhang Yi, Shields Yasmina et al. (2025-05)
    Mechanical Properties of 3D Printed Concrete with 2D Infill Patterns Including Print Path Crossings
  6. Kandagaddala Revanth, Boddepalli Uday, Nanthagopalan Prakash (2025-05)
    Novel Rheological Test Procedure for Printability Characterization of 3D Printable Mortar
  7. Beigh Mirza, Signorini Cesare, Rauf Asim, Schröfl Christof et al. (2025-04)
    Intrinsic Rheological Behavior of Limestone Calcined Clay Cementitious (LC3) Binders for Automated Construction:
    Effect of Calcium Sulfate Varieties
  8. Cho Eunsan, Gwon Seongwoo, Cha Soowon, Shin Myoungsu (2025-04)
    Impact of Accelerator on Rheological Properties of Cement Composites with Cellulose Microfibers:
    3D Printing Perspective
  9. Ravichandran Darssni, Prem Prabhat, Giridhar Greeshma, Bhaskara Gollapalli et al. (2025-04)
    Time-Dependent Properties of 3D-Printed UHPC with Silica Sand, Copper Slag, and Fibers
  10. Chen Wei, Pan Jinlong, Zhu Binrong, Han Jinsheng et al. (2025-03)
    Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete
  11. Abudawaba Fareh, Gomaa Eslam, Gheni Ahmed, Feys Dimitri et al. (2025-03)
    Evaluation of Fresh Properties of High Calcium Content Fly Ash-Based Alkali-Activated 3D-Printed Mortar
  12. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
    From Local Earth to Modern Structures:
    A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction
  13. Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
    Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
    A Review
  14. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  15. Márquez Álvaro, Varela Hugo, Barluenga Gonzalo (2024-12)
    Rheology and Early-Age Evaluation of 3D Printable Cement-Limestone-Filler-Pastes with Nano-Clays and Methylcellulose
  16. Wang Lei, Nerella Venkatesh, Li Dianmo, Zhang Yuying et al. (2024-11)
    Biochar-Augmented Climate-Positive 3D Printable Concrete
  17. Kaya Ebru, Ciza Baraka, Yalçınkaya Çağlar, Felekoğlu Burak et al. (2024-11)
    Effect of Hydroxypropyl-Methylcellulose and Aggregate Volume on Fresh and Hardened Properties of 3D Printable Concrete
  18. Yasin Mazhar, Siddiqi Zahid, Ur Rehman Atteq, Noshin Sadaf et al. (2024-11)
    Innovative Early-Age Mechanical Properties of 3D Printable Mortar Enhanced with SBR-Latex and Kaolin
  19. Yang Yekai, Zhang Chiyu, Liu Zhongxian, Dong Liang et al. (2024-10)
    Effect of Hydration Process on the Inter-Layer Bond Tensile Mechanical Properties of Ultra-High-Performance Concrete for 3D Printing
  20. Zhao Zhihui, Liu Minghao, Kang Aihong, Cai Xianhuan et al. (2024-08)
    Rheology and Buildability of Sustainable 3D Printed Magnesium-Potassium-Phosphate-Cement Composites Incorporating MgO-SiO2-K2HPO4
  21. Prem Prabhat, Ambily Parukutty, Kumar Shankar, Giridhar Greeshma et al. (2024-07)
    Structural Build-Up-Model for Three-Dimensional Concrete Printing Based on Kinetics-Theory
  22. Luo Surong, Li Wenqiang, Wang Dehui (2024-05)
    Study on Bending Performance of 3D Printed PVA-Fiber-Reinforced Cement-Based Material
  23. An Dong, Zhang Yixia, Yang Chunhui (2024-05)
    Incorporating Coarse Aggregates into 3D Concrete Printing from Mixture Design and Process-Control to Structural Behavior and Practical Applications:
    A Review
  24. Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
    A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
    Material-Preparation, Construction-Process and Structure-Level
  25. Miranda Luiza, Jovanović Balša, Lesage Karel, Schutter Geert (2023-10)
    Geometric Conformability of 3D Concrete Printing Mixtures from a Rheological Perspective
  26. Thib Raghed, Belayachi Naima, Bouarroudj Mohamed, Bulteel David et al. (2023-10)
    A Methodology for Designing 3D Printable Mortar Based on Recycled Sand
  27. Rehman Atta, Perrot Arnaud, Birru Bizu, Kim Jung-Hoon (2023-09)
    Recommendations for Quality-Control in Industrial 3D Concrete Printing Construction with Mono-Component Concrete:
    A Critical Evaluation of Ten Test-Methods and the Introduction of the Performance-Index
  28. Jia Zijian, Zhang Zedi, Jia Lutao, Cao Ruilin et al. (2023-09)
    Effect of Different Expansive Agents on the Early-Age Structural Build-Up Process of Cement-Paste
  29. Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2023-08)
    Slag-Modified Fiber-Reinforced Metakaolin-Based Geopolymer for 3D Concrete Printing Application:
    Evaluating Fresh and Hardened Properties
  30. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  31. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  32. Chen Yu, Zhang Yu, He Shan, Liang Xuhui et al. (2023-06)
    Improving Structural Build-Up of Limestone-Calcined-Clay-Cement-Pastes by Using Inorganic Additives
  33. Sasikumar Athira, Balasubramanian Dhayalini, Senthil Kumaran M., Govindaraj Vishnuvarthanan (2023-05)
    Effect of Coarse Aggregate Content on the Rheological and Buildability Properties of 3D Printable Concrete
  34. Haar Bjorn, Kruger Jacques, Zijl Gideon (2023-05)
    Off-Site Construction with 3D Concrete Printing
  35. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  36. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  37. Bong Shin, Nematollahi Behzad, Nerella Venkatesh, Mechtcherine Viktor (2022-09)
    Method of Formulating 3D Printable Strain-Hardening Alkali-Activated Composites for Additive Construction
  38. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  39. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
    Rheometry for Concrete 3D Printing:
    A Review and an Experimental Comparison
  40. Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
    A Review of Large-Scale 3DCP:
    Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies
  41. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-06)
    Criticality of Microstructural Evolution at an Early-Age on the Buildability of an Accelerated 3D Printable Concrete
  42. Roussel Nicolas, Buswell Richard, Ducoulombier Nicolas, Ivanova Irina et al. (2022-06)
    Assessing the Fresh Properties of Printable Cement-Based Materials:
    High-Potential Tests for Quality-Control
  43. Lee Jin, Kim Jae (2022-05)
    Matric-Suction of Fine Sand and Its Effect on the Shape Stability of 3D Printed Cement Mortar
  44. Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
    Buildability Prediction of 3D Printed Concrete at Early-Ages:
    A Numerical Study with Drucker-Prager-Model
  45. Bhattacherjee Shantanu, Santhanam Manu (2022-04)
    Investigation on the Effect of Alkali-Free Aluminium Sulfate-Based Accelerator on the Fresh Properties of 3D Printable Concrete
  46. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  47. Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
    Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer
  48. Yuan Qiang, Gao Chao, Huang Tingjie, Zuo Shenghao et al. (2022-03)
    Factors Influencing the Properties of Extrusion-Based 3D Printed Alkali-Activated Fly-Ash-Slag Mortar
  49. Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2022-02)
    Extrusion-Process-Simulation and Layer-Shape-Prediction During 3D Concrete Printing Using the Particle-Finite-Element-Method
  50. Shao Lijing, Feng Pan, Zuo Wenqiang, Wang Haochuan et al. (2022-02)
    A Novel Method for Improving the Printability of Cement-Based Materials:
    Controlling the Releasing of Capsules Containing Chemical Admixtures
  51. Eugenin Claudia, Navarrete Iván, Brevis Wernher, Lopez Mauricio (2022-02)
    Air-Bubbles as an Admixture for Printable Concrete:
    A Review of the Rheological Effect of Entrained Air
  52. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  53. Tripathi Avinaya, Nair Sooraj, Neithalath Narayanan (2022-01)
    A Comprehensive Analysis of Buildability of 3D Printed Concrete and the Use of Bi-Linear Stress-Strain Criterion-Based Failure Curves Towards Their Prediction
  54. Vasilić Ksenija, Hack Norman, Kloft Harald, Lowke Dirk et al. (2022-01)
    Digitale Fertigung im Betonbau
  55. Şahin Hatice, Mardani Ali (2021-12)
    Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
    A State of the Art Review
  56. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  57. Miranda Luiza, Lesage Karel, Schutter Geert (2021-09)
    Understanding the Structural Build-Up-Rate of Cementitious Materials for 3D Printing
  58. Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2021-09)
    Particle-Finite-Element-Simulation of Extrusion-Processes of Fresh Concrete During 3D Concrete Printing
  59. Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
    Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates
  60. Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
    Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails
  61. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  62. Ghourchian Sadegh, Butler Marko, Krüger Markus, Mechtcherine Viktor (2021-04)
    Modelling the Development of Capillary Pressure in Freshly 3D Printed Concrete Elements
  63. Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
    3D Concrete Printing of Permanent Formwork for Concrete Column Construction
  64. Cho Seung, Kruger Jacques, Rooyen Algurnon, Zijl Gideon (2021-03)
    Rheology and Application of Buoyant Foam-Concrete for Digital Fabrication
  65. Baz Bilal, Rémond Sébastien, Aouad Georges (2021-01)
    Influence of the Mix Composition on the Thixotropy of 3D Printable Mortars
  66. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  67. Ashrafi Negar, Nazarian Shadi, Meisel Nicholas, Duarte José (2020-10)
    Experimental Prediction of Material-Deformation in Large-Scale Additive Manufacturing of Concrete
  68. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication
  69. Zhang Yi, Jiang Zhengwu, Zhu Yanmei, Zhang Jie et al. (2020-10)
    Effects of Redispersible Polymer-Powders on the Structural Build-Up of 3D Printing Cement Paste with and without Hydroxypropyl-Methylcellulose
  70. Bhattacherjee Shantanu, Santhanam Manu (2020-07)
    Enhancing Buildability of 3D Printable Concrete by Spraying of Accelerating-Admixture on Surface
  71. Jacquet Yohan, Picandet Vincent, Rangeard Damien, Perrot Arnaud (2020-07)
    Gravity-Driven Tests to Assess Mechanical Properties of Printable Cement-Based Materials at Fresh State
  72. Markin Slava, Ivanova Irina, Fataei Shirin, Reißig Silvia et al. (2020-07)
    Investigation on Structural Build-Up of 3D Printable Foam-Concrete
  73. Zongo Karim, Charrier Malo, Duval Corentin, Ouellet-Plamondon Claudiane (2020-07)
    Dynamic and Static Yield-Stress Determination of Cementitious Paste with Admixtures
  74. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
    Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing
  75. Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
    Setting-on-Demand for Digital Concrete:
    Principles, Measurements, Chemistry, Validation
  76. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  77. Ivanova Irina, Mechtcherine Viktor (2020-01)
    Possibilities and Challenges of Constant Shear-Rate-Test for Evaluation of Structural Build-Up-Rate of Cementitious Materials
  78. Ma Guowei, Li Yanfeng, Wang Li, Zhang Junfei et al. (2020-01)
    Real-Time Quantification of Fresh and Hardened Mechanical Property for 3D Printing Material by Intellectualization with Piezoelectric Transducers
  79. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Sanjayan Jay (2019-12)
    Dimensional Accuracy, Flowability, Wettability, and Porosity in Inkjet 3DP for Gypsum and Cement Mortar Materials
  80. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  81. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  82. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  83. Markin Slava, Nerella Venkatesh, Schröfl Christof, Guseynova Gyunay et al. (2019-07)
    Material-Design and Performance-Evaluation of Foam-Concrete for Digital Fabrication
  84. Silva Wilson, Fryda Hervé, Bousseau Jean-Noël, Andreani Pierre-Antoine et al. (2019-07)
    Evaluation of Early-Age Concrete Structural Build-Up for 3D Concrete Printing by Oscillatory Rheometry
  85. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  86. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  87. Sakka Fatima, Assaad Joseph, Hamzeh Farook, Nakhoul Charbel (2019-07)
    Thixotropy and Interfacial Bond Strengths of Polymer-Modified Printed Mortars
  88. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  89. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing

BibTeX
@article{nere_beig_fata_mech.2019.SBAfMSBUoCPitCoDC,
  author            = "Venkatesh Naidu Nerella and Mirza Abdul Basit Beigh and Shirin Fataei and Viktor Mechtcherine",
  title             = "Strain-Based Approach for Measuring Structural Build-Up of Cement-Pastes in the Context of Digital Construction",
  doi               = "10.1016/j.cemconres.2018.08.003",
  year              = "2019",
  journal           = "Cement and Concrete Research",
  volume            = "115",
  pages             = "530--544",
}
Formatted Citation

V. N. Nerella, M. A. B. Beigh, S. Fataei and V. Mechtcherine, “Strain-Based Approach for Measuring Structural Build-Up of Cement-Pastes in the Context of Digital Construction”, Cement and Concrete Research, vol. 115, pp. 530–544, 2019, doi: 10.1016/j.cemconres.2018.08.003.

Nerella, Venkatesh Naidu, Mirza Abdul Basit Beigh, Shirin Fataei, and Viktor Mechtcherine. “Strain-Based Approach for Measuring Structural Build-Up of Cement-Pastes in the Context of Digital Construction”. Cement and Concrete Research 115 (2019): 530–44. https://doi.org/10.1016/j.cemconres.2018.08.003.