Skip to content

Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar (2022-06)

10.1016/j.conbuildmat.2022.128007

 Zhang Hanghua,  Xiao Jianzhuang,  Duan Zhenhua,  Zou Shuai,  Xia Bing
Journal Article - Construction and Building Materials, Vol. 342

Abstract

3D printing process poses great impacts on the properties of mortar, especially on the shrinkage behavior of 3D printed mortar (3DPM) prepared with recycled fine aggregate (RFA) and recycled powder (RP). This study focuses on the effects of printing paths on the flowability and the drying shrinkage of 3DPM. RFA and RP, together with their contents, are used as variables in 3DPM. The results show that the flow loss of mortar during the first 30 mins increased with the incorporation of recycled fines due to the high water-absorption of RFA and the low hydration reactivity of RP. The drying shrinkage development of 3DPM was higher than that of cast mortar during the first 28 days, but exhibited a deceleration in shrinkage increasing rate after 28 days. Printing path showed a limited effect on the mass loss of 3DPM during the test period, but had significant impacts on the drying shrinkage and the shrinkage development trend. An increase in drying shrinkage of 3DPM was caused by 50 ~ 100% RFA replacement (29.1 ~ 57.9% in 60 days), while 10 ~ 20% RP content decreased the drying shrinkage of 3DPM (3.3 ~ 12.4% in 60 days). Additionally, the incorporation of recycled fines delayed the development of 3DPM drying shrinkage.

31 References

  1. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  2. Baz Bilal, Aouad Georges, Rémond Sébastien (2020-01)
    Effect of the Printing Method and Mortar’s Workability on Pull-Out Strength of 3D Printed Elements
  3. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  4. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  5. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  6. Ghourchian Sadegh, Butler Marko, Krüger Markus, Mechtcherine Viktor (2021-04)
    Modelling the Development of Capillary Pressure in Freshly 3D Printed Concrete Elements
  7. Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
    Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  8. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  9. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  10. Khoshnevis Behrokh, Dutton Rosanne (1998-01)
    Innovative Rapid Prototyping Process Makes Large-Sized, Smooth-Surfaced Complex Shapes in a Wide Variety of Materials
  11. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  12. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  13. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
    Plastic Shrinkage Cracking in 3D Printed Concrete
  14. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-04)
    A Plastic Shrinkage Cracking-Risk-Model for 3D Printed Concrete Exposed to Different Environments
  15. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  16. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  17. Putten Jolien, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-08)
    Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers
  18. Putten Jolien, Snoeck Didier, Coensel R., Schutter Geert et al. (2020-12)
    Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers
  19. Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2021-09)
    Shrinkage Behavior of Cementitious 3D Printing Materials:
    Effect of Temperature and Relative Humidity
  20. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
    A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar
  21. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  22. Wang Hailong, Shao Jianwen, Zhang Jing, Zou Daoqin et al. (2021-11)
    Bond Shear Performances and Constitutive Model of Interfaces Between Vertical and Horizontal Filaments of 3D Printed Concrete
  23. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  24. Xiao Jianzhuang, Lv Zhenyuan, Duan Zhenhua, Hou Shaodan (2022-03)
    Study on Preparation and Mechanical Properties of 3D Printed Concrete with Different Aggregate-Combinations
  25. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder
  26. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  27. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  28. Zhang Yu, Qiao Hongxia, Qian Rusheng, Xue Cuizhen et al. (2022-02)
    Relationship Between Water-Transport Behavior and Inter-Layer Voids of 3D Printed Concrete
  29. Zhang Hanghua, Xiao Jianzhuang (2021-08)
    Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand
  30. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  31. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
    Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials

35 Citations

  1. Öztürk Ece, Ince Ceren, Borgianni Yuri, Nicolaides Demetris et al. (2025-12)
    Printability, Engineering Properties and Environmental Implications of 3D-Printed Cementitious Mortars Incorporating Hydrated Lime, Tile Powder and Accelerator
  2. Sikora Paweł, Federowicz Karol, Skibicki Szymon, Techman Mateusz et al. (2025-11)
    Demonstration of 3D-Printed Concrete Containing Fine Recycled Concrete Aggregates and Recycled Concrete Powder:
    Rheology, Early-Age, Shrinkage, Mechanical, and Durability Performance.
  3. González-Aviña J., Hosseinpoor Masoud, Yahia Ammar, Kohandelnia Mojtaba et al. (2025-10)
    Anionic Biopolymers to Enhance Concrete Rheological Properties for 3D Printing Applications
  4. Ravichandran Darssni, Prem Prabhat, Bhaskara Gollapalli, Maheswaran Srinivasan et al. (2025-07)
    Time-Dependent Properties of 3D Printable Plain and Fibered High Strength Concrete Incorporating Copper Slag as an Alternate Fine Aggregate
  5. Ma Jinyi, Zhang Haiyan, Wang Yanzhi, Xiong Lu et al. (2025-07)
    Effect of Clay Brick Powder and Recycled Fine Aggregates on Properties of 3D Printed Concrete After High Temperature Exposure
  6. Els Heinrich, Zijl Gideon, Villiers Wibke (2025-06)
    A Review of Shrinkage and Restrained Shrinkage Cracking in 3D Concrete Printing
  7. Gomez Jaramillo Laura, Luković Mladena, Šavija Branko, Zhou Wen (2025-06)
    Recycled Sand for 3D-Printed Strain Hardening Cementitious Composite:
    A Review of Recent Developments
  8. Aly Ahmed Aly, Mantawy Islam (2025-05)
    Additive Construction of Low Embodied Carbon Concrete:
    Geopolymer Concrete
  9. Thib Raghed, Taleb Maria, Belayachi Naima, Bulteel David et al. (2025-05)
    Hardened Properties of 3D Printable Mortars with Full Replacement of Natural Sand by Recycled Sand
  10. Cavalcante Tiago, Toledo Filho Romildo, Mendoza Reales Oscar (2025-04)
    Rheological and Environmental Implications of Recycled Concrete Powder as Filler in Concrete 3D Printing
  11. Zhang Yuying, Zhu Xiaohong, Li Muduo, Zhang Chao et al. (2025-04)
    3D Printing Technology in Concrete Construction
  12. Mim Nusrat, Shaikh Faiz, Sarker Prabir (2025-03)
    Sustainable 3D Printed Concrete Incorporating Alternative Fine Aggregates:
    A Review
  13. Şahin Hatice, Kaya Yahya, Akgümüş Fatih, Mardani Naz et al. (2025-03)
    Degradation of Mechanical Properties of 3D Fiber Reinforced Printed Concrete Mixtures Exposed to Elevated Temperatures
  14. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  15. Venugopal Reddy P., Nakkeeran G., Roy Dipankar, Alaneme George (2024-11)
    Evaluating the Use of Recycled Fine Aggregates in 3D Printing:
    A Systematic Review
  16. Federowicz Karol, Cendrowski Krzysztof, Sikora Paweł (2024-10)
    Low-Carbon Cementitious Composite Incorporated with Biochar and Recycled Fines Suitable for 3D Printing Applications:
    Hydration, Shrinkage and Early-Age Performance
  17. Reißig Silvia, Herdan Annika, Mechtcherine Viktor (2024-09)
    Characterisation of the Rheological Behavior of a Resource-Saving Sustainable Concrete in the Context of 3D Printing
  18. Li Bingying, Ding Tao, Qu Changwei, Liu Wei (2024-07)
    Modification of Fresh and Hardened Properties of 3D Printed Recycled Mortar by Superabsorbent Polymers
  19. Villiers Wibke, Mwongo Mwiti, Babafemi Adewumi, Zijl Gideon (2024-06)
    Quantifying Recycled Construction and Demolition Waste for Use in 3D Printed Concrete
  20. Aslani Farhad, Zhang Yifan (2024-06)
    Sustainable 3D Printed Concrete Structures Using High-Quality Secondary Raw Materials
  21. González-Fonteboa Belén, Seara-Paz Sindy, Caneda-Martínez Laura (2024-06)
    3D Printing Concrete with Byproducts
  22. Liu Qiong, Tang Huilin, Chen Kailun, Peng Bin et al. (2024-05)
    Utilizing CO2 to Improve Plastic Shrinkage and Mechanical Properties of 3D Printed Mortar Made with Recycled Fine Aggregates
  23. Lyu Qifeng, Wang Yalun, Dai Pengfei (2024-05)
    Multilayered Plant-Growing Concrete Manufactured by Aggregate-Bed 3D Concrete Printing
  24. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  25. Ma Lei, Jia Zijian, Chen Yuning, Jiang Yifan et al. (2024-03)
    Water Loss and Shrinkage Prediction in 3D Printed Concrete with Varying w/b and Specimen Sizes
  26. Robayo-Salazar Rafael, Vargas Armando, Martínez Fabio, Gutiérrez Ruby (2024-02)
    Utilization of Powders and Fine Aggregates from the Recycling of Construction and Demolition Waste in the 3D Printing of Portland-Based Cementitious Materials
  27. Zhang Hanghua, Tan Yanke, Hao Lucen, Zheng Shipeng et al. (2024-02)
    Intelligent Real-Time Quality-Control for 3D Printed Concrete with Near-Nozzle Secondary-Mixing
  28. Liu Qiong, Cheng Shengbo, Peng Bin, Chen Kailun et al. (2024-01)
    The Buildability and Flexural Properties of 3D Printed Recycled Mortar Reinforced with Synchronized Steel-Cable Under Different Reinforcement Ratios
  29. Zhang Hanghua, Hao Lucen, Zhang Shipeng, Xiao Jianzhuang et al. (2023-08)
    Advanced Measurement Techniques for Plastic Shrinkage and Cracking in 3D Printed Concrete Utilising Distributed Optical Fiber Sensor
  30. Zhu Lingli, Zhang Meng, Zhang Yaqi, Yao Jie et al. (2023-07)
    Research Progress on Shrinkage Properties of Extruded 3D Printed Cement-Based Materials
  31. Wu Yiwen, Liu Chao, Bai Guoliang, Liu Huawei et al. (2023-03)
    3D Printed Concrete with Recycled Sand:
    Pore-Structure and Triaxial Compression Properties
  32. Fonseca Mariana, Matos Ana (2023-03)
    3D Construction Printing Standing for Sustainability and Circularity:
    Material-Level Opportunities
  33. Basha Shaik, Rehman Atta, Aziz Md, Kim Jung-Hoon (2023-02)
    Cement Composites with Carbon-Based Nanomaterials for 3D Concrete Printing Applications:
    A Review
  34. Tanapornraweekit Ganchai, Jiramarootapong Patiphat, Paudel Satish, Tangtermsirikul Somnuk et al. (2022-11)
    Experimental and Numerical Investigation of 3D Printed Mortar Walls Under Uniform Axial Compression
  35. Wang Li, Lin Wenyu, Ma Hui, Li Dexin et al. (2022-09)
    Mechanical and Microstructural Properties of 3D Printed Aluminate-Cement-Based Composite Exposed to Elevated Temperatures

BibTeX
@article{zhan_xiao_duan_zou.2022.EoPPaRFoDSo3PM,
  author            = "Hanghua Zhang and Jianzhuang Xiao and Zhenhua Duan and Shuai Zou and Bing Xia",
  title             = "Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar",
  doi               = "10.1016/j.conbuildmat.2022.128007",
  year              = "2022",
  journal           = "Construction and Building Materials",
  volume            = "342",
}
Formatted Citation

H. Zhang, J. Xiao, Z. Duan, S. Zou and B. Xia, “Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar”, Construction and Building Materials, vol. 342, 2022, doi: 10.1016/j.conbuildmat.2022.128007.

Zhang, Hanghua, Jianzhuang Xiao, Zhenhua Duan, Shuai Zou, and Bing Xia. “Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar”. Construction and Building Materials 342 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128007.