A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites (2024-05)¶
Rahman Mahfuzur, , , Mahil Ahmed,
Journal Article - Journal of Building Engineering, No. 109719
Abstract
The undeniable potential of 3D printing technology to revolutionize global manufacturing processes has led to the emergence of advanced, digitalized, and fully automated construction techniques. Despite the growing interest in this technology, a significant challenge still exists in the development of cement-based printing material due to the complex interaction of various fresh and rheological property parameters. This review comprehensively explores fundamental fresh properties (flowability, buildability, extrudability, pumpability and open time) and rheological properties (static yield stress, dynamic yield stress, plastic viscosity) essential for the formulation of 3D printable cementitious composites, with and without fibres. The results obtained from different rheometers for successful 3D printed mixes are also summarised, highlighting variation in recorded values. Moreover, the review thoroughly investigates factors affecting both fresh and rheological properties, such as the type of supplementary cementitious materials, fibre type and dosage, superplasticizer, and viscosity-modifying admixture. It also identifies the clear impact of these parameters and further recommends the optimal range of some properties, such as a flowability value between 160-200 mm, to achieve desirable 3D printability of cementitious composites. Overall, this review offers valuable insights for developing new mix compositions suitable for 3D printing and serves as a useful tool in establishing guidelines for 3D printable cementitious composite materials, which are currently lacking but crucial for research, development, and application in this field.
¶
94 References
- Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
A Review of Large-Scale 3DCP:
Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies - Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing - Aslani Farhad, Dale Ryan, Hamidi Fatemeh, Valizadeh Afsaneh (2022-05)
Mechanical and Shrinkage Performance of 3D Printed Rubberised Engineered Cementitious Composites - Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates - Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers - Bakhshi Amir, Sedghi Reza, Hojati Maryam (2021-06)
A Preliminary Study on the Mix-Design of 3D Printable Engineered Cementitious Composite - Barbosa Marcella, Anjos Marcos, Cabral Kleber, Souza Dias Leonardo (2022-05)
Development of Composites for 3D Printing with Reduced Cement Consumption - Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
Sustainable Materials for 3D Concrete Printing - Bhushan Jindal Bharat, Jangra Parveen (2023-05)
3D Printed Concrete:
A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications - Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing - Chen Mingxu, Guo Xiangyang, Zheng Yan, Li Laibo et al. (2018-11)
Effect of Tartaric Acid on the Printable, Rheological and Mechanical Properties of 3D Printing Sulphoaluminate Cement-Paste - Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite - Chu Shaohua, Li Leo, Kwan Albert (2020-09)
Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate - Deng Qi, Zou Shuai, Xi Yonghui, Singh Amardeep (2023-06)
Development and Characteristic of 3D Printable Mortar with Waste-Glass-Powder - Deshmukh Aparna, Heintzkill Reed, Huerta Rosalba, Sobolev Konstantin (2021-11)
Rheological Response of Magnetorheological Cementitious Inks Tuned for Active Control in Digital Construction - Douba AlaEddin, Kawashima Shiho (2021-11)
Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
An Approach to Develop Printable Strain-Hardening Cementitious Composites - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
Mechanical Behavior of Printed Strain-Hardening Cementitious Composites - Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
Fresh Properties of 3D Printed Mortar with Recycled Powder - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
Rheometry for Concrete 3D Printing:
A Review and an Experimental Comparison - Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
Test-Methods for 3D Printable Concrete - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Kilic Ugur, Ma Ji, Baharlou Ehsan, Ozbulut Osman (2023-03)
Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-12)
Evaluation of the Mechanical Properties of a 3D Printed Mortar - Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites - Li Zhijian, Wang Li, Ma Guowei (2018-05)
Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar - Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Wang Li (2017-08)
A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing - Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
Hydration- and Rheology-Control of Concrete for Digital Fabrication:
Potential Admixtures and Cement-Chemistry - Markin Slava, Krause Martin, Otto Jens, Schröfl Christof et al. (2021-06)
3D Printing with Foam-Concrete:
From Material Design and Testing to Application and Sustainability - Mechtcherine Viktor, Nerella Venkatesh, Kasten Knut (2013-12)
Testing Pumpability of Concrete Using Sliding-Pipe Rheometer - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders - Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Oh Sangwoo, Choi Seongcheol (2023-05)
Effects of Superabsorbent Polymers (SAP) On the Rheological Behavior of Cement Mortars:
A Rheological Study on Performance Requirements for 3D Printable Cementitious Materials - Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Papachristoforou Michail, Mitsopoulos Vasilios, Stefanidou Maria (2018-10)
Evaluation of Workability Parameters in 3D Printing Concrete - Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
A Review - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Perrot Arnaud, Rangeard Damien (2019-04)
3D Printing in Concrete:
Techniques for Extrusion-Casting - Quah Tan, Tay Yi, Lim Jian, Tan Ming et al. (2023-03)
Concrete 3D Printing:
Process-Parameters for Process-Control, Monitoring and Diagnosis in Automation and Construction - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Ramezani Amir, Modaresi Shahriar, Dashti Pooria, Givkashi Mohammad et al. (2023-04)
Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures:
A Review - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications - Singh Narinder, Colangelo Francesco, Farina Ilenia (2023-06)
Sustainable Non-Conventional Concrete 3D Printing:
A Review - Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction - Soltan Daniel, Li Victor (2018-03)
A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
3D Printed Concrete for Large-Scale Buildings:
An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
Role of Chemical Admixtures on 3D Printed Portland Cement:
Assessing Rheology and Buildability - Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
Mechanical Properties and Durability - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Teixeira João, Schaefer Cecília, Maia Lino, Rangel Bárbara et al. (2022-03)
Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials - Tinoco Matheus, Gouvêa Lucas, Cássia Magalhães Martins Karenn, Toledo Filho Romildo et al. (2022-12)
The Use of Rice Husk Particles to Adjust the Rheological Properties of 3D Printable Cementitious Composites Through Water Sorption - Tran Mien, Cu Yen, Le Chau (2021-10)
Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing - Varela Hugo, Barluenga Gonzalo, Perrot Arnaud (2023-07)
Extrusion and Structural Build-Up of 3D Printing Cement-Pastes with Fly-Ash, Nano-Clay and VMAs - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model - Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing - Xiao Jianzhuang, Hou Shaodan, Duan Zhenhua, Zou Shuai (2023-01)
Rheology of 3D Printable Concrete Prepared by Secondary Mixing of Ready-Mix Concrete - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei et al. (2022-05)
Effect of FA and GGBFS on Compressive Strength, Rheology, and Printing Properties of Cement-Based 3D Printing Material - Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Yin Yunchao, Huang Jian, Wang Tiezhu, Yang Rong et al. (2023-09)
Effect of Hydroxypropyl-Methylcellulose on Rheology and Printability of the First Printed Layer of Cement Activated Slag-Based 3D Printing Concrete - Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
3D Printable Engineered Cementitious Composites:
Fresh and Hardened Properties - Yue Hongfei, Hua Sudong, Qian Hao, Yao Xiao et al. (2021-12)
Investigation on Applicability of Spherical Electric Arc-Furnace-Slag as Fine Aggregate in Superplasticizer-Free 3D Printed Concrete - Zhang Yifan, Aslani Farhad (2021-08)
Development of Fiber-Reinforced Engineered Cementitious Composite Using Polyvinyl-Alcohol-Fiber and Activated Carbon-Powder for 3D Concrete Printing - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete - Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing - Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
Material-Preparation, Construction-Process and Structure-Level - Zhao Yu, Yang Guang, Zhu Lingli, Ding Yahong et al. (2022-10)
Effects of Rheological Properties and Printing Speed on Molding Accuracy of 3D Printing Basalt-Fiber Cementitious Materials - Zhou Yiyi, Jiang Dan, Sharma Rahul, Xie Yi et al. (2022-11)
Enhancement of 3D Printed Cementitious Composite by Short Fibers:
A Review - Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites - Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction - Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing
28 Citations
- Ding Yao, Liu Yifan, Yang Bo, Liu Jiepeng et al. (2026-01)
Application of Artificial Intelligence Technology in 3D Concrete Printing Quality Inspection and Control:
A State-of-the-Art Review - Liu Renlong, Cheng Zhangqi (2025-10)
Interlayer Fracture Properties of 3D-Printed Cement-Based Structures:
Influencing Factors and Mechanisms - Ngo Than, Li Shuai, Huynh Tien, Zhang Y. et al. (2025-10)
3D Printable Hemp Concrete:
Rheological, Mechanical, and Microstructural Properties - Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
Rheology to Microstructure and Eco-Functionality - Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures - Rahman Mahfuzur, An Dong, Rawat Sanket, Yang Richard et al. (2025-09)
Development of Green 3D Printable Cementitious Composites Using Multi-Response Optimisation Method - Nasr Ahmed, Wang Jiyuan, Duan Zhenhua, Deng Qi et al. (2025-09)
Assessing the Visibility and Impact of Recycled High-Density Polyethylene Fibers in 3D-Printed Cementitious Composites - Tarhan İsmail, Tarhan Yeşim (2025-09)
Nonlinear In-Plane Response of 3D-Printed Concrete Walls with Varied Infill Patterns:
Experimental Mix Design and Numerical Structural Assessment - Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
Industrial Waste in 3D Printed Concrete:
A Mechanistic Review on Rheological Control and Printability - Safanelli Nicollas, Schackow Adilson, Effting Carmeane, Matos Paulo (2025-09)
The Effect of Crystalline Nanocellulose on the Rheology, Hydration of Cement Pastes, and Buildability of 3D-Printed Concrete - Rahman S., Khair Sanjida, Shaikh Faiz, Sarker Prabir (2025-09)
Decarbonized 3D Printed Concrete Incorporating Lithium Slag and PVA Fiber:
Buildability, Mechanical, and Microstructural Insights - Yu Qian, Zhang Yamei, Pan Jinlong (2025-08)
Multi-Scale Orthotropic Damage Constitutive Model for 3D Printed Concrete Informed by Pore Structure - Geng Shao-bo, Zhang Chen, Zhang Hui, Hai Lu et al. (2025-08)
Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete:
Multi-Scale Mechanisms of Fracture Behaviour - Wang Jiakang, Anwar Muhammad, Zhu Xingyi, Zhang Yating et al. (2025-07)
Robust Optimization of Formulation Ratios for the Mechanical, Microstructural and Printing Performance of Cost-Effective 3D Printing Geopolymer - Yousaf Arslan, Khan Shoukat, Koç Muammer (2025-07)
Material, Process, and Design Optimization of Local Earthen Soil Reinforced with Natural Fiber Waste and Nanoclay for 3DP of Functional Structures - Sando Mona, Stephan Dietmar (2025-07)
Online Monitoring for 3D Printable Geopolymers:
Automated Slug Test Analysis with Image Analysis Revealing Mixing Sequence Effects - Rusu Mihai, Ardelean Ioan (2025-06)
Relations Between the Printability Descriptors of Mortar and NMR Relaxometry Data - Mishra Sanjeet, Upadhyay Bikash, Das B. (2025-06)
Exploring the Role of Metakaolin in Binary and Ternary Blended 3D Printable Mortars:
Deep Insights into Printability - Surehali Sahil, Venkatachalam Akshay, Divigalpitiya Ranjith, Kumar Aditya et al. (2025-06)
Ultra-Low Dosages of Novel Graphene Types Enhance the Rheological Properties and Buildability of 3D Printed Binders - Raza Ali, Junjie Zhang, Fan Jiahui, Umar Muhammad et al. (2025-05)
Comprehensive Study on the Microstructural and Mechanical Performance of 3D-Printed Engineered Cementitious Composites with Yellow River Sand Integration - An Dong, Rahman Mahfuzur, Zhang Y., Yang Chunhui (2025-05)
Effects of Key 3D Concrete Printing Process Parameters on Layer Shape:
Experimental Study and Smooth Particle Hydrodynamics Modelling - Shen Jianyu, Ye Taohua, Xiao Jianzhuang, Li Shuisheng (2025-04)
Mechanical and Thermal Properties of 3D Printed Earth Concrete Solidified by Geopolymers:
A Study of Utilizing Excavated Clay - Rudziewicz Magdalena, Hutyra Adam, Maroszek Marcin, Korniejenko Kinga et al. (2025-04)
3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement - Araújo Rísia, Martinelli Antônio, Cabral Kleber, Nunes Ueslei et al. (2025-03)
Effect of Lightweight Expanded Clay Aggregate (LECA) On the Printability of Cementitious Compositions for 3D Printing - Chen Meng, Li Jiahui, Zhang Tong, Zhang Mingzhong (2025-01)
3D Printability of Recycled Steel-Fiber-Reinforced Ultra-High-Performance Concrete - Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
From Local Earth to Modern Structures:
A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction - Ting Guan, Tay Yi, Quah Tan, Tan Ming et al. (2024-09)
Sustainable Support-Material for Overhang Printing in 3D Concrete Printing Technology - Xu Wen, Jiang Dengjie, Zhao Qian, Wang Linbing (2024-08)
Study on Printability of 3D Printing Carbon-Fiber-Reinforced Eco-Friendly Concrete:
Characterized by Fluidity and Consistency
BibTeX
@article{rahm_rawa_yang_mahi.2024.ACRoFaRPo3PCC,
author = "Mahfuzur Rahman and Sanket Rawat and Chunhui Richard Yang and Ahmed Mahil and Yixia X. Zhang",
title = "A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites",
doi = "10.1016/j.jobe.2024.109719",
year = "2024",
journal = "Journal of Building Engineering",
pages = "109719",
}
Formatted Citation
M. Rahman, S. Rawat, C. R. Yang, A. Mahil and Y. X. Zhang, “A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites”, Journal of Building Engineering, p. 109719, 2024, doi: 10.1016/j.jobe.2024.109719.
Rahman, Mahfuzur, Sanket Rawat, Chunhui Richard Yang, Ahmed Mahil, and Yixia X. Zhang. “A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites”. Journal of Building Engineering, 2024, 109719. https://doi.org/10.1016/j.jobe.2024.109719.