Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing (2020-04)¶
, , , , ,
Journal Article - Additive Manufacturing, Vol. 34
Abstract
When conducting corner printing with rotational rectangular nozzle, a greater amount of material is deposited inside the filament and hence tearing and skewing will occur on the surface of the printed filament. With the aim of maintaining the surface finish and mechanical properties of the printed filament, a 3D numerical model is developed to study the flow mechanism at a corner under various conditions during the extrusion and deposition processes with rotational nozzle. After experimental validation, the numerical model is employed to study the material flow mechanism under various conditions. The results indicate that the rheological properties have little effect on the mass distribution ratio. However, a high relative nozzle travel speed, larger corner radii and lower nozzle aspect ratio is a promising route in obtaining a uniform material distribution ratio. The interlinking of process parameters affects the material distribution ratio significantly as well. Furthermore, the importance of the factors that affect the mass distribution was determined quantitatively.
¶
14 References
- Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Comminal Raphaël, Serdeczny Marcin, Pedersen David, Spangenberg Jon (2019-06)
Motion-Planning and Numerical Simulation of Material-Deposition at Corners in Extrusion Additive Manufacturing - Li Mingyang, Lao Wenxin, He Lewei, Masia Lorenzo et al. (2018-05)
Effect of Rotational Trapezoid Shaped Nozzle on Material-Distribution in 3D Cementitious Material-Printing-Process - Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Tay Yi, Li Mingyang, Tan Ming (2019-04)
Effect of Printing Parameters in 3D Concrete Printing:
Printing Region and Support Structures - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
Time-Gap-Effect on Bond Strength of 3D Printed Concrete - Weng Yiwei, Li Mingyang, Liu Zhixin, Lao Wenxin et al. (2018-12)
Printability and Fire Performance of a Developed 3D Printable Fiber-Reinforced Cementitious Composites under Elevated Temperatures - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink
47 Citations
- Disu Oluwatimilehin, Ismail Sikiru, Wood Luke, Chrysanthou Andreas et al. (2025-08)
Experimental Study on Buildability of 3D-Printed Cement-Based Structures Using Aluminium Sulphate - Liu Zhixin, Si Liang, Liu Yebao, Li Mingyang et al. (2025-08)
Optimization of Printing Parameters Based on Computational Fluid Dynamics for Uniform Filament Mass Distribution at Corners in 3D Cementitious Material Printing - Panchal Priyanka, Choi Myoungsung (2025-07)
A Review on Effect of Natural Fibers to Mitigate CO2 Footprint and Enhance Engineering Properties of 3D Printing Concrete - Khare Karan, Khan Subim, Lal Dhirajkumar, Sonawane Pavankumar et al. (2025-07)
Design and Development of a Nozzle Assembly for 3D Concrete Printing Applications - Zuo Zibo, Huang Yulin, Corte Wouter (2025-06)
Real-Time Monitoring of Printed Concrete Weight During 3D Concrete Printing to Inversely Assess Process Stability:
Indicators and Experiments - Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi et al. (2025-05)
Modelling of 3D Concrete Printing Based on SPH Method with the Herschel-Bulkley-Papanastasiou Rheology Model - Zhang Ziqi, Pan Tinghong, Guoa Rongxin, Lin Runsheng et al. (2025-04)
Simulation and Analysis of Material Stacking and Migration Induced by Extrusion Behavior in 3D Printed Concrete - Liu Chao, Li Xin, Wu Yiwen, Liu Huawei et al. (2025-03)
Impact of External Loading on the Time-Dependent Evolution of 3D Printed Concrete with Recycled Sand in the Green State - Liu Zhenbang, Li Mingyang, Wang Xiangyu, Wong Teck et al. (2025-03)
Investigate Mechanisms of Different Printing Parameters on the Mechanical Anisotropy of 3D Concrete Printing Elements by Using Computed Tomography Scan and Computational Fluid Dynamics Methods - Jiang Youbau, Gao Pengxiang, Adhikari Sondipon, Yao Xiaofei et al. (2024-12)
Studies on the Mechanical Properties of Inter-Layer Interlocking 3D Printed Concrete Based on a Novel Nozzle - Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
Materials, Engineered Properties and Techniques for Additive Manufacturing - Zhao Herui, Jiang Quan, Xia Yong, Liu Jian et al. (2024-11)
Microbial-Induced Carbonate Reinforcement for 3D Printed Concrete:
Testing in Printable and Mechanical Strength - Chen Yidong, Zhang Yunsheng, Quan Hongzhu, Liu Cheng et al. (2024-10)
Early-Age Time-Dependent Mechanical Properties of 3D Printed Concrete with Coarse Aggregates - Jiang Shangjin, Wang Yuntao, Hua Sudong, Yue Hongfei et al. (2024-08)
Preparation and Performance Characterization of Low-Density 3D Printed Expanded Perlite-Foam-Concrete - Cui Weijiu, Sun Haijun, Zhou Jiangang, Wang Sheng et al. (2024-07)
Geometric Quality Evaluation of Three-Dimensional Printable Concrete Using Computational Fluid Dynamics - Rama Krishna A., Mallik Mainak, Maity Damodar (2024-06)
Developing an Appropriate Concrete Mix for 3D Concrete Printing - Tran Mien, Ly Duy-Khuong, Nguyen Tan, Tran Nhi (2024-05)
Robust Prediction of Workability Properties for 3D Printing with Steel-Slag-Aggregate Using Bayesian Regularization and Evolution Algorithm - Wei Ying, Han Song, Yu Shiwei, Chen Ziwei et al. (2024-05)
Parameter Impact on 3D Concrete Printing from Single to Multi-Layer Stacking - Tao Yaxin, Zhou Jiangang, Cui Weijiu, Shi Xinyu et al. (2024-04)
Numerical Assessment of Plastic Yielding in Extrusion-Based 3D Concrete Printing - Wei Ying, Han Song, Chen Ziwei, Lu Jianxian et al. (2024-04)
Numerical Simulation of 3D Concrete Printing Derived from Printer Head and Printing Process - Reinold Janis, Daadouch Koussay, Meschke Günther (2023-11)
Numerical Simulation of Three Dimensional Concrete Printing Based on a Unified Fluid and Solid Mechanics Formulation - Pan Tinghong, Guo Rongxin, Fu Chaoshu, Ji Xuping et al. (2023-10)
Extrusion-Based 3D Concrete Printing with Different Flow-Direction - Liu Zhenbang, Li Mingyang, Quah Tan, Wong Teck et al. (2023-09)
Comprehensive Investigations on the Relationship Between the 3D Concrete Printing Failure Criterion and Properties of Fresh-State Cementitious Materials - Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials - Liu Zhenbang, Li Mingyang, Moo Guo, Kobayashi Hitoshi et al. (2023-05)
Effect of Nano-Structured Silica-Additives on the Extrusion-Based 3D Concrete Printing Application - Chen Hao, Zhang Daobo, Chen Peng, Li Ning et al. (2023-03)
A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing - Quah Tan, Tay Yi, Lim Jian, Tan Ming et al. (2023-03)
Concrete 3D Printing:
Process-Parameters for Process-Control, Monitoring and Diagnosis in Automation and Construction - Li Mingyang, Liu Zhixin, Ho Jin, Wong Teck (2023-03)
Improving Homogeneity of 3D Printed Cementitious Material-Distribution for Radial Tool-Path - Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete - Salaimanimagudam M., Jayaprakash Jaganathan (2022-11)
Optimum Selection of Reinforcement, Assembly, and Formwork System for Digital Fabrication Technique in Construction Industry:
A Critical Review - García Rodrigo, Dokladalova Eva, Dokládal Petr, Caron Jean-François et al. (2022-09)
In-Line Monitoring of 3D Concrete Printing Using Computer-Vision - Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar? - Elistratkin Michail, Alfimova Nataliya, Podgorniy Daniil, Olisov Andrey et al. (2022-05)
Influence of Equipment Operation Parameters on the Characteristics of a Track Produced with Construction 3D Printing - Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
A Review - Pan Tinghong, Teng Huaijin, Liao Hengcheng, Jiang Yaqing et al. (2022-03)
Effect of Shaping Plate Apparatus on Mechanical Properties of 3D Printed Cement-Based Materials:
Experimental and Numerical Studies - Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
3D Concrete Printing Modelling of Thin-Walled Structures - Carneau Paul, Mesnil Romain, Baverel Olivier, Roussel Nicolas (2022-03)
Layer Pressing in Concrete Extrusion-Based 3D Printing:
Experiments and Analysis - Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2022-02)
Extrusion-Process-Simulation and Layer-Shape-Prediction During 3D Concrete Printing Using the Particle-Finite-Element-Method - Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates - Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
A Review - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Ning Xin, Liu Tong, Wu Chunlin, Wang Chao (2021-04)
3D Printing in Construction:
Current Status, Implementation Hindrances, and Development Agenda - Nguyen Vuong, Panda Biranchi, Zhang Guomin, Nguyen-Xuan Hung et al. (2021-01)
Digital Design Computing and Modelling for 3D Concrete Printing - Sepasgozar Samad, Shi Anqi, Yang Liming, Shirowzhan Sara et al. (2020-12)
Additive Manufacturing Applications for Industry 4.0:
A Systematic Critical Review - Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
3D Printed Concrete for Large-Scale Buildings:
An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects - He Lewei, Chow Wai, Li Hua (2020-06)
Effects of Inter-Layer Notch and Shear Stress on Inter-Layer Strength of 3D Printed Cement-Paste
BibTeX
@article{liu_li_tay_weng.2020.RNaNSoMDaCi3CMP,
author = "Zhixin Liu and Mingyang Li and Yi Wei Daniel Tay and Yiwei Weng and Teck Neng Wong and Ming Jen Tan",
title = "Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing",
doi = "10.1016/j.addma.2020.101190",
year = "2020",
journal = "Additive Manufacturing",
volume = "34",
}
Formatted Citation
Z. Liu, M. Li, Y. W. D. Tay, Y. Weng, T. N. Wong and M. J. Tan, “Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing”, Additive Manufacturing, vol. 34, 2020, doi: 10.1016/j.addma.2020.101190.
Liu, Zhixin, Mingyang Li, Yi Wei Daniel Tay, Yiwei Weng, Teck Neng Wong, and Ming Jen Tan. “Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing”. Additive Manufacturing 34 (2020). https://doi.org/10.1016/j.addma.2020.101190.