Skip to content

PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing (2021-11)

Mechanical Properties and Durability

10.1016/j.addma.2021.102500

 Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng,  Wang Hailong
Journal Article - Additive Manufacturing, Vol. 49

Abstract

Three-dimensional (3D)-printed concrete is a highly promising construction material that will allow for the realisation of formless construction and digital design. The constructability, mechanical properties, and durability of the matrix have a determining effect on the structural applicability of the concrete. In this study, to alter the brittle failure mode of common printed concrete, polyvinyl alcohol fibres were incorporated into a cementitious printing ink. The mix proportion was optimised based on the construction requirements in terms of the flowability, setting time, stacking stability, and load-bearing capacity. Next, the effects of the printing and loading paths on the mechanical properties and durability were investigated experimentally. Computed tomography (CT) imaging was employed to determine the defect distributions of the 3D-printed samples as well as the mechanisms responsible for the observed differences in their mechanical properties and durability. The CT images showed that a greater number of defects were present between the adjacent strips than between the layers. This microscale heterogeneity induced macroscale anisotropy in the printed samples. Further, the printing and loading paths also affected the mechanical properties and durability of the samples. The flexural strength was more sensitive to the interfacial defects as compared to the compressive strength. The stacking-up method is better suited for increasing the density of the printed matrix, resulting in greater chloride ion penetration at the interface than is the case for the matrix, which is affected by the interfacial defects.

20 References

  1. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  2. Bohuchval Marie, Sonebi Mohammed, Amziane Sofiane, Perrot Arnaud (2020-12)
    Effect of Metakaolin and Natural Fibers on Three-Dimensional Printing Mortar
  3. Chen Mingxu, Yang Lei, Zheng Yan, Li Laibo et al. (2021-01)
    Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites
  4. Ding Zhu, Wang Xiaodong, Sanjayan Jay, Zou Patrick et al. (2018-11)
    A Feasibility Study on HPMC-Improved Sulphoaluminate Cement for 3D Printing
  5. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  6. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  7. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  8. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  9. Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
    Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars
  10. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  11. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  12. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  13. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  14. Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
    3D Printed Steel-Reinforcement for Digital Concrete Construction:
    Manufacture, Mechanical Properties and Bond Behavior
  15. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  16. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  17. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  18. Rushing Todd, Chaar Ghassan, Eick Brian, Burroughs Jedadiah et al. (2017-01)
    Investigation of Concrete Mixtures for Additive Construction
  19. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  20. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink

79 Citations

  1. Reis Rui, Aroso Francisca, Brandão Filipe, Camões Aires et al. (2026-01)
    A Systematic Review on the Durability of 3D-Printed Cementitious Materials:
    Insights and Research Challenges
  2. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Mustafa Ali et al. (2025-12)
    Passive Determination of Anisotropic Compressive Strength of 3D Printed Concrete Using Multiple Neural Networks Enhanced with Explainable Machine Learning (XML)
  3. Liu Xinhao, Hu Jiajun, Xiong Guiyan, Cundy Andrew et al. (2025-12)
    Long-Term Durability and Degradation Mechanisms of 3D Printed Geopolymers (3DPG) With/Without Healing Agents in Marine Environments
  4. Hasan Md, Xu Jie, Uddin Md (2025-11)
    A Critical Review of 3D Printed Fiber-Based Geopolymer Concrete:
    Fresh Properties, Mechanical Performance, and Current Limitations
  5. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  6. Faleschini Flora, Trento Daniel, Zanini Mariano (2025-11)
    Earth as a Building Material:
    From Traditional Building Techniques to Additive Manufacturing
  7. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  8. Alonso-Cañon Sara, Blanco-Fernandez Elena, Cuesta-Astorga Eva, Indacoechea-Vega Irune et al. (2025-09)
    Selection of the Best 3D Printing High-Performance Mortars Using Multi-Criteria Analysis
  9. Chen Wenguang, Liang Long, Ye Junhong, Liu Lingfei et al. (2025-09)
    Machine Learning-Enabled Performance-Based Design of Three-Dimensional Printed Engineered Cementitious Composites
  10. Lin Manfang, Ding Yao, Yu Fan, Li Lingzhi et al. (2025-08)
    Synergistic Strengthening of 3D‑printed ECC Beams Through Steel-Wire Mesh and Interfaces Treatments
  11. Geng Shao-bo, Zhang Chen, Zhang Hui, Hai Lu et al. (2025-08)
    Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete:
    Multi-Scale Mechanisms of Fracture Behaviour
  12. Dong Liang, Wu Chengqing, Liu Zhongxian, Wu Pengtao et al. (2025-07)
    Chloride Transport Anisotropy and Interfacial Degradation in 3D-Printed Ultra-High-Performance Concrete:
    Multi-Scale Evaluation and Engineering Implications
  13. Hopkins Ben, Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    Recent Advancements in Polypropylene Fiber-Reinforced 3D-Printed Concrete:
    Insights into Mix Ratios, Testing Procedures, and Material Behaviour
  14. Song Xinlei, Xu Quanbiao, Wang Hailong, Sun Xiaoyan et al. (2025-05)
    Flowability-Dependent Anisotropic Mechanical Properties of 3D Printing Concrete:
    Experimental and Theoretical Study
  15. Hiremath Shivashankarayya, Mathapati Gururaj, Chiniwar Dundesh, Vishwanatha H. (2025-05)
    Performance Evaluation of Cementitious Composites by Designing an Extrusion System for Construction 3D Printing
  16. Ersoy Seher, Abuqasim Shaima, Kurtay Yıldız Mine, Öztürk İrfan et al. (2025-05)
    Machine Learning Approximation of Water Transport in 3D-Printable Composites via Karsten Tube
  17. Luo Xiaoyu, Zhao Yuqi, Yao Xiaofei, Zou Cunjun et al. (2025-05)
    3D Printing Concrete Interface Treatment Based on Physical and Chemical Methods:
    A Review
  18. Das B., Prathap Y., Sandeep Ankit, Vaghamshi Keval et al. (2025-05)
    Reviewing the Materials Selection, Rheology, Durability, and Microstructural Characteristics of 3D Printed Concrete
  19. Xia Kailun, Chen Yuning, Chen Yu, Jia Lutao et al. (2025-04)
    Programmable Toughening for 3D Printed Concrete and Architected Cementitious Materials
  20. Zhou Wen, Xu Yading, Meng Zhaozheng, Xie Jinbao et al. (2025-03)
    Filament Stitching:
    An Architected Printing Strategy to Mitigate Anisotropy in 3D-Printed Engineered Cementitious Composites
  21. Yuan Yong, Fatoyinbo Imoleayo, Sheng Ruiyi, Wang Qiling et al. (2025-02)
    Advancing the Applicability of Recycled Municipal Solid Waste Incineration Bottom Ash as a Cement Substitute in Printable Concrete:
    Emphasis on Rheological and Microstructural Properties
  22. Xia Zhenjiang, Geng Jian, Zhou Zhijie, Liu Genjin (2025-01)
    Comparative Analysis of Polypropylene, Basalt, and Steel Fibers in 3D Printed Concrete:
    Effects on Flowability, Printabiliy, Rheology, and Mechanical Performance
  23. Maroszek Marcin, Rudziewicz Magdalena, Hutyra Adam, Dziura Paweł et al. (2024-12)
    Evaluation of 3D Concrete Printing Extrusion-Efficiency
  24. Alarrak Rashed, Brand Alexander (2024-12)
    Mechanical Performance of Extruded Functionally-Graded Fiber-Reinforced Mortar with Targeted Fiber-Injection
  25. Luo Surong, Jin Wenhao, Wu Weihong, Zhang Kaijian (2024-11)
    Rheological and Mechanical Properties of Polyformaldehyde-Fiber-Reinforced 3D Printed High-Strength Concrete with the Addition of Fly-Ash
  26. Venugopal Reddy P., Nakkeeran G., Roy Dipankar, Alaneme George (2024-11)
    Evaluating the Use of Recycled Fine Aggregates in 3D Printing:
    A Systematic Review
  27. Lin Yini, Yan Jiachuan, Sun Ming, Han Xiaoyu et al. (2024-10)
    Inter-Layer Cohesion in 3D Printed Concrete:
    The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure
  28. Wang Qiang, Yang Wenwei, Wang Li, Zhang Dan et al. (2024-09)
    Flexural Performance of the Integrated Steel-Truss-Reinforced 3D Printed Concrete Beams:
    Experimental and Numerical Analysis
  29. Han Kang, Gu Fei, Yang Huashan, Tian Xinchen et al. (2024-09)
    PVA-Fiber-Reinforced Red Mud-Based Geopolymer for 3D Printing:
    Printability, Mechanical Properties and Microanalysis
  30. Rider Bo, Kurtis K., Stewart L. (2024-09)
    Quantification of Porosity and Sorptivity in Fiber-Reinforced 3D Printed Mortar:
    Connecting Material-Composition and Structural Performance
  31. Sun Xiaoyan, Lin Xiqiang, He Huanan, Yang Hongyang et al. (2024-09)
    Steel Reinforced 3D Printing Concrete Housing Building and Its Modular Assembly Construction
  32. Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
    Porosity and Durability Tests on 3D Printing Concrete:
    A Review
  33. Zhang Kaijian, Lin Wenqiang, Zhang Qingtian, Wang Dehui et al. (2024-07)
    Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete
  34. Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2024-07)
    CO2-Driven Additive Manufacturing of Sustainable Steel-Slag-Mortars
  35. Gu Yucun, Khayat Kamal (2024-06)
    Effect of Superabsorbent Polymer on 3D Printing Characteristics as Rheology-Modified-Agent
  36. Zhi Peng, Wu Yuching, Bai Meiyan (2024-06)
    Determining the Effect of Geometric and Dynamic Properties of Screws on Fiber-Orientation During FRC 3D Printing Based on Discrete Element Simulation
  37. Chen Wenguang, Ye Junhong, Jiang Fangming, Fediuk Roman et al. (2024-05)
    Printability Region for 3D Printable Engineered Cementitious Composites
  38. Luo Surong, Li Wenqiang, Wang Dehui (2024-05)
    Study on Bending Performance of 3D Printed PVA-Fiber-Reinforced Cement-Based Material
  39. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites
  40. Zhou Boyu, Zhang Mo, Ma Guowei (2024-05)
    An Experimental Study on 3D Printed Concrete Reinforced with Fibers Recycled from Wind Turbine Blades
  41. Bodur Burak, Mecit Işık Muhammet, Benli Ahmet, Bayrak Barış et al. (2024-05)
    Durability of Green Rubberized 3D Printed Lightweight Cement Composites Reinforced with Micro-Attapulgite and Micro-Steel-Fibers:
    Printability and Environmental Perspective
  42. Huang Tao, Peng Zhongqi, Wang Mengge, Feng Shuang (2024-04)
    Study on the Ionic Transport Properties of 3D Printed Concrete
  43. Ahmed Hassan, Giwa Ilerioluwa, Game Daniel, Arce Gabriel et al. (2024-04)
    Automated Reinforcement During Large-Scale Additive Manufacturing:
    Structural-Assessment of a Dual Approach
  44. Jia Zijian, Zhou Mengting, Chen Yu, Wang Wei et al. (2024-03)
    Effect of Steel-Fiber Shape and Content on Printability, Microstructure and Mechanical Properties of 3D Printable High-Strength Cementitious Materials
  45. Chen Zhengyuan, Yang Shutong, Liu Qi, Xu Mingqi et al. (2024-03)
    Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete
  46. Dai Pengfei, Lyu Qifeng, Zong Meirong, Zhu Pinghua (2024-01)
    Effect of Waste-Plastic-Fibers on the Printability and Mechanical Properties of 3D Printed Cement Mortar
  47. Khan Shayan, Ghazi Syed, Amjad Hassan, Imram Muhammad et al. (2023-12)
    Emerging Horizons in 3D Printed Cement-Based Materials with Nano-Material-Integration:
    A Review
  48. Li Yeou-Fong, Tsai Pei-Jen, Syu Jin-Yuan, Lok Man-Hoi et al. (2023-12)
    Mechanical Properties of 3D Printed Carbon Fiber-Reinforced Cement Mortar
  49. Liu Ke, Takasu Koji, Jiang Jinming, Zu Kun et al. (2023-12)
    Mechanical Properties of 3D Printed Concrete Components:
    A Review
  50. Alyami Mana, Khan Majid, Fawad Muhammad, Nawahz R. et al. (2023-11)
    Predictive Modeling for Compressive Strength of 3D Printed Fiber-Reinforced Concrete Using Machine Learning Algorithms
  51. Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
    A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
    Material-Preparation, Construction-Process and Structure-Level
  52. Singh Amardeep, Wang Yufei, Zhou Yiyi, Sun Junbo et al. (2023-10)
    Utilization of Antimony-Tailings in Fiber-Reinforced 3D Printed Concrete:
    A Sustainable Approach for Construction Materials
  53. Akman Arabella, Sadhu Ayan (2023-10)
    Recent Development of 3D Printing Technology in Construction Engineering
  54. Rui Aoyu, Wang Li, Lin Wenyu, Ma Guowei (2023-10)
    Experimental Study on Damage Anisotropy of 3D Printed Concrete Exposed to Sulfate-Attack
  55. Alarrak Rashed, Jeon Byeonguk, Brand Alexander (2023-09)
    Flexural Toughness of Extruded Fiber-Reinforced Mortar with Preferentially Aligned Fibers
  56. Alarrak Rashed, Jeon Byeonguk, Brand Alexander (2023-08)
    Fracture Properties of Extruded Fiber-Reinforced Mortar with Preferentially Aligned Fibers
  57. Chen Mingxu, Jin Yuan, Sun Keke, Wang Shoude et al. (2023-08)
    Study on the Durability of 3D Printed Calcium-Sulphoaluminate Cement-Based Materials Related to Rheology-Control
  58. Zhou Wen, McGee Wesley, Gökçe H., Li Victor (2023-08)
    A Bio-Inspired Solution to Alleviate Anisotropy of 3D Printed Engineered Cementitious Composites (3DP-ECC):
    Knitting/Tilting Filaments
  59. Arrêteau Manon, Fabien Aurélie, Haddaji Badreddine, Chateigner Daniel et al. (2023-07)
    Review of Advances in 3D Printing Technology of Cementitious Materials:
    Key Printing Parameters and Properties Characterization
  60. Sukontasukkul Piti, Maho Buchit, Komkham Sila, Pianfuengfoo Satharat et al. (2023-07)
    Precise Determination of Initial Printable Time for Cement Mortar 3D Printing Using a Derivative Method
  61. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2023-07)
    In-Situ Coating Technique for Rebar Installation for 3D Printed Reinforced Concrete
  62. Wang Fei, Hua Sudong, Chen Tingzhu, He Bijuan et al. (2023-07)
    Effect of Nano-Clay and PCE on the Buildability of Ultra-Fine Dredged Sand-Based 3D Printing Materials
  63. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  64. Pietras Daniel, Zbyszyński Wojciech, Sadowski Tomasz (2023-06)
    A 3D Printing Method of Cement-Based FGM Composites Containing Granulated Cork, Polypropylene Fibers, and a Polyethylene Net Inter-Layer
  65. Arslan Volkan, Dogan Zekeriya (2023-04)
    Three-Dimensional, Printable Paving Stone:
    A Preliminary Study
  66. Ramezani Amir, Modaresi Shahriar, Dashti Pooria, Givkashi Mohammad et al. (2023-04)
    Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures:
    A Review
  67. Bazli Milad, Ashrafi Hamed, Rajabipour Ali, Kutay Cat (2023-02)
    3D Printing for Remote Housing:
    Benefits and Challenges
  68. Zhou Yiyi, Jiang Dan, Sharma Rahul, Xie Yi et al. (2022-11)
    Enhancement of 3D Printed Cementitious Composite by Short Fibers:
    A Review
  69. Lv Chun, Shen Hongtao, Liu Jie, Wu Dan et al. (2022-11)
    Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy
  70. Kan Deyuan, Liu Guifeng, Cao Shuang, Chen Zhengfa et al. (2022-11)
    Mechanical Properties and Pore-Structure of Multi-Walled Carbon-Nano-Tube-Reinforced Reactive Powder-Concrete for Three-Dimensional Printing Manufactured by Material-Extrusion
  71. Yang Rijiao, Zhu Yi, Lan Yan, Zeng Qiang et al. (2022-10)
    Differences in Micro Grain & Fiber-Distributions Between Matrix and Inter-Layer of Cementitious Filaments Affected by Extrusion-Molding
  72. Liu Bing, Liu Xiaoyan, Li Guangtao, Geng Songyuan et al. (2022-09)
    Study on Anisotropy of 3D Printing PVA-Fiber-Reinforced Concrete Using Destructive and Non-Destructive Testing Methods
  73. Wang Li, Lin Wenyu, Ma Hui, Li Dexin et al. (2022-09)
    Mechanical and Microstructural Properties of 3D Printed Aluminate-Cement-Based Composite Exposed to Elevated Temperatures
  74. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  75. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  76. Zhu Binrong, Pan Jinlong, Li Junrui, Wang Penghui et al. (2022-07)
    Relationship Between Microstructure and Strain-Hardening Behavior of 3D Printed Engineered Cementitious Composites
  77. Liu Xiongfei, Li Qi, Li Jixiang (2022-04)
    Shrinkage and Mechanical Properties Optimization of Spray-Based 3D Printed Concrete by PVA-Fiber
  78. Liu Jie, Lv Chun (2022-03)
    Properties of 3D Printed Polymer Fiber-Reinforced Mortars:
    A Review
  79. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction

BibTeX
@article{sun_zhou_wang_shi.2022.PFRHSCCf3P,
  author            = "Xiaoyan Sun and Jiawei Zhou and Qun Wang and Jiangpeng Shi and Hailong Wang",
  title             = "PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing: Mechanical Properties and Durability",
  doi               = "10.1016/j.addma.2021.102500",
  year              = "2022",
  journal           = "Additive Manufacturing",
  volume            = "49",
}
Formatted Citation

X. Sun, J. Zhou, Q. Wang, J. Shi and H. Wang, “PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing: Mechanical Properties and Durability”, Additive Manufacturing, vol. 49, 2022, doi: 10.1016/j.addma.2021.102500.

Sun, Xiaoyan, Jiawei Zhou, Qun Wang, Jiangpeng Shi, and Hailong Wang. “PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing: Mechanical Properties and Durability”. Additive Manufacturing 49 (2022). https://doi.org/10.1016/j.addma.2021.102500.