Skip to content

A Review on Effect of Natural Fibers to Mitigate CO2 Footprint and Enhance Engineering Properties of 3D Printing Concrete (2025-07)

10.1016/j.jobe.2025.113562

Panchal Priyanka, Choi Myoungsung
Journal Article - Journal of Building Engineering, No. 113562

Abstract

3D printing concrete (3DPC) technology holds considerable promise that can revolutionize construction practices offering numerous advantages such as material efficiency, formwork elimination, time efficiency, and sustainability. This review investigates the effect of natural fibers specifically hemp, jute, kenaf, rice husk, and bamboo on enhancing the mechanical performance and sustainability of 3D-printing (3DP). The primary objective is to evaluate the fiber influence on mechanical strengths, durability and CO2 emission reduction. An analysis of peer-review literature was conducted, focusing on effect of chemical treatment on fibers influencing mechanical properties and sustainability aspects. This review categorizes parameters affecting 3DP into three realms : material-related, system-related, economic and environmental factors. Finding suggested that merging natural fibers can significantly improve structural performance while promoting sustainable construction. Natural fibers contribute to reducing binder usage and low CO2 footprints, especially when combined with design strategies. These findings are based on comparative analysis across studies, highlighting the importance of material optimization for sustainable construction. Future research should focus on challenges associated using natural fibers, material optimization, treatment methods and mix design to fully leverage performance and sustainability benefits in large-scale 3D-printed construction.

68 References

  1. Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
    Potential Benefits of Digital Fabrication for Complex Structures:
    Environmental Assessment of a Robotically Fabricated Concrete Wall
  2. Alchaar Aktham, Tamimi Adil (2020-10)
    Mechanical Properties of 3D Printed Concrete in Hot Temperatures
  3. Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
    Environmental Assessment of Large-Scale 3D Printing in Construction:
    A Comparative Study between Cob and Concrete
  4. Alkhalidi Ammar, Hatuqay Dina (2020-02)
    Energy Efficient 3D Printed Buildings:
    Material and Techniques Selection Worldwide Study
  5. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  6. Bhushan Jindal Bharat, Jangra Parveen (2023-05)
    3D Printed Concrete:
    A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications
  7. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  8. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  9. Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
    An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures
  10. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  11. Dias José, Brandão Filipe, Figueiredo Bruno, Cruz Paulo (2024-09)
    The Potential of Natural Fiber-Reinforcement in 3D Printed Concrete:
    A Review
  12. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  13. Fonseca Mariana, Matos Ana (2023-03)
    3D Construction Printing Standing for Sustainability and Circularity:
    Material-Level Opportunities
  14. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  15. He Yawen, Zhang Yamei, Zhang Chao, Zhou Hongyu (2020-05)
    Energy-Saving-Potential of 3D Printed Concrete Building with Integrated Living Wall
  16. Hierden Naomi, Gauvin Florent, Lucas Sandra, Salet Theo et al. (2021-06)
    Use of Hemp-Fibers in 3D Printed Concrete
  17. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  18. Huang Xin, Yang Weihao, Song Fangnian, Zou Jiuqun (2022-04)
    Study on the Mechanical Properties of 3D Printing Concrete Layers and the Mechanism of Influence of Printing Parameters
  19. Jagoda Jeneé, Diggs-McGee Brandy, Kreiger Megan, Schuldt Steven (2020-04)
    The Viability and Simplicity of 3D Printed Construction:
    A Military Case Study
  20. Kaszyńska Maria, Skibicki Szymon, Hoffmann Marcin (2020-12)
    3D Concrete Printing for Sustainable Construction
  21. Khalili Tari Mohammadreza, Reza Faraji Amir, Aslani Alireza, Zahedi Rahim (2023-01)
    Energy Simulation and Life Cycle Assessment of a 3D Printable Building
  22. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  23. Li Zhijian, Wang Li, Ma Guowei (2018-05)
    Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar
  24. Liu Zhixin, Li Mingyang, Tay Yi, Weng Yiwei et al. (2020-04)
    Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing
  25. Liu Siyu, Lu Bing, Li Hongliang, Pan Zehua et al. (2022-03)
    A Comparative Study on Environmental Performance of 3D Printing and Conventional Casting of Concrete Products with Industrial Wastes
  26. Liu Jie, Lv Chun (2022-03)
    Properties of 3D Printed Polymer Fiber-Reinforced Mortars:
    A Review
  27. Lu Yue, Xiao Jianzhuang, Li Yan (2024-03)
    3D Printing Recycled Concrete Incorporating Plant-Fibers:
    A Comprehensive Review
  28. Luhar Salmabanu, Suntharalingam Thadshajini, Navaratnam Satheeskumar, Luhar Ismail et al. (2020-12)
    Sustainable and Renewable Bio-Based Natural Fibers and Its Application for 3D Printed Concrete:
    A Review
  29. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  30. Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
    3D Concrete Printing:
    Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups
  31. Mohammad Malek, Masad Eyad, Ghamdi Sami (2020-12)
    3D Concrete Printing Sustainability:
    A Comparative Life Cycle Assessment of Four Construction Method Scenarios
  32. Muñoz Ivan, Madrid Javier, Muñiz Manuel, Uhart Maylis et al. (2021-01)
    Life Cycle Assessment of Integrated Additive-Subtractive Concrete 3D Printing
  33. Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
    Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing
  34. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  35. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  36. Papachristoforou Michail, Mitsopoulos Vasilios, Stefanidou Maria (2018-10)
    Evaluation of Workability Parameters in 3D Printing Concrete
  37. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  38. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  39. Puzatova (nee Sharanova) Anastasiia, Shakor Pshtiwan, Laghi Vittoria, Dmitrieva Maria (2022-11)
    Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer:
    A Review
  40. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  41. Şahin Hatice, Mardani Ali (2021-12)
    Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
    A State of the Art Review
  42. Samad Nur, Abdullah Siti, Ibrahim Mustaffa, Shahidan Shahiron et al. (2022-05)
    Initial Properties of 3D Printing Concrete Using Rice-Husk-Ash as Partial Cement Replacement
  43. Sambucci Matteo, Biblioteca Ilario, Valente Marco (2023-01)
    Life Cycle Assessment (LCA) of 3D Concrete Printing and Casting Processes for Cementitious Materials Incorporating Ground Waste Tire Rubber
  44. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  45. Sayegh Sameh, Romdhane Lotfi, Manjikian Solair (2022-03)
    A Critical Review of 3D Printing in Construction:
    Benefits, Challenges, and Risks
  46. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  47. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
    A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar
  48. Šinka Māris, Spuriņa Ella, Korjakins Aleksandrs, Bajāre Diāna (2022-09)
    Hempcrete:
    CO2 Neutral Wall Solutions for 3D Printing
  49. Sonebi Mohammed, Dedenis Marie, Abdalqader Ahmed, Perrot Arnaud (2021-11)
    Effect of Red Mud, Nano-Clay, and Natural Fiber on Fresh and Rheological Properties of Three-Dimensional Concrete Printing
  50. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
    3D Printed Concrete for Large-Scale Buildings:
    An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects
  51. Tinoco Matheus, Gouvêa Lucas, Cássia Magalhães Martins Karenn, Toledo Filho Romildo et al. (2022-12)
    The Use of Rice Husk Particles to Adjust the Rheological Properties of 3D Printable Cementitious Composites Through Water Sorption
  52. Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
    Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
    A Systematic Literature Review
  53. Valera Hugo, Pimentel Tinoco Matheus, Mendoza Reales Oscar, Toledo Filho Romildo et al. (2024-09)
    Rheological and 3D Printing-Assessment of Sisal-Fiber Mortar for Architectural Applications
  54. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  55. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  56. Weng Yiwei, Li Mingyang, Wong Teck, Tan Ming (2021-01)
    Synchronized Concrete and Bonding-Agent-Deposition-System for Inter-Layer Bond Strength Enhancement in 3D Concrete Printing
  57. Wolfs Robert, Bos Freek, Salet Theo (2018-06)
    Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete
  58. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  59. Wolfs Robert, Bos Freek, Strien Emiel, Salet Theo (2017-06)
    A Real-Time Height Measurement and Feedback System for 3D Concrete Printing
  60. Wu Yun-Chen, Li Mo (2022-09)
    Effects of Early-Age Rheology and Printing Time Interval on Late-Age Fracture Characteristics of 3D Printed Concrete
  61. Wu Zhengyu, Memari Ali, Duarte José (2022-01)
    State of the Art Review of Reinforcement-Strategies and Technologies for 3D Printing of Concrete
  62. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  63. Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
    Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete
  64. Yemesegen Eden, Memari Ali (2023-07)
    A Review of Experimental Studies on Cob, Hempcrete, and Bamboo Components and the Call for Transition Towards Sustainable Home Building with 3D Printing
  65. Zareiyan Babak, Khoshnevis Behrokh (2018-05)
    Effects of Mixture Ingredients on Extrudability of Concrete in Contour Crafting
  66. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  67. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  68. Zuo Zibo, Zhang Yamei, Li Jin, Huang Yulin et al. (2025-03)
    Systematic Workflow for Digital Design and On-Site 3D Printing of Large Concrete Structures:
    A Case Study of a Full-Size Two-Story Building

1 Citations

  1. Chan Li-Jing, Padil Khairul, Chin Chee-Long, Ibrahim Izni et al. (2025-09)
    Strategies to Enhance Interlayer Bonding in 3D Printed Concrete:
    A Review

BibTeX
@article{panc_choi.2025.ARoEoNFtMCFaEEPo3PC,
  author            = "Priyanka Panchal and Myoungsung Choi",
  title             = "A Review on Effect of Natural Fibers to Mitigate CO2 Footprint and Enhance Engineering Properties of 3D Printing Concrete",
  doi               = "10.1016/j.jobe.2025.113562",
  year              = "2025",
  journal           = "Journal of Building Engineering",
  pages             = "113562",
}
Formatted Citation

P. Panchal and M. Choi, “A Review on Effect of Natural Fibers to Mitigate CO2 Footprint and Enhance Engineering Properties of 3D Printing Concrete”, Journal of Building Engineering, p. 113562, 2025, doi: 10.1016/j.jobe.2025.113562.

Panchal, Priyanka, and Myoungsung Choi. “A Review on Effect of Natural Fibers to Mitigate CO2 Footprint and Enhance Engineering Properties of 3D Printing Concrete”. Journal of Building Engineering, 2025, 113562. https://doi.org/10.1016/j.jobe.2025.113562.