Skip to content

Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy (2022-11)

10.3390/ma15228032

Lv Chun, Shen Hongtao, Liu Jie, Wu Dan, Qu Enxiang, Liu Shuang
Journal Article - Materials, Vol. 15, Iss. 22

Abstract

The engineering applications and related researches of 3D printing fiber-reinforced geopolymers are becoming more and more extensive. However, compared with traditional mould-casted cement-based materials, the properties of 3D-printed fiber-reinforced geopolymers are significantly different, and their interlayer bonding and anisotropy effects are less studied, so in-depth analysis and summary are needed. Similar to common cement-based materials, the reinforcement fibers for geopolymers include not only traditional fibers, such as steel fibers and carbon fibers, but also synthetic polymer fibers and natural polymer fibers. These fibers have unique properties, most of which have good mechanical properties and bonding properties with geopolymers, as well as excellent crack resistance and enhancement. This paper summarizes and analyzes the effects of traditional fibers, polymer fibers, plant fibers and other reinforcement fibers on the properties of 3D-printed fiber-reinforced geopolymers, especially on the interlayer bonding and anisotropy. The influence of the flow and thixotropic properties of fiber-reinforced fresh geopolymer on the weak bond and anisotropy between layers is summarized and analyzed. At the same time, the influence of fibers on the compressive strength, flexural strength and interlayer binding strength of the hardened geopolymers is investigated. The effect of fibers on the anisotropy of 3D-printed geopolymers and the methods to improve the interlayer binding degree are summarized. The limitations of 3D printing fiber-reinforced geopolymers are pointed out and some suggestions for improvement are put forward. Finally, the research on 3D printing fiber-reinforced geopolymers is summarized. This paper provides a reference for further improving the interlayer bonding strength of 3D-printed fiber-reinforced geopolymers. At the same time, the anisotropy properties of 3D-printed fiber-reinforced geopolymers are used to provide a basis for engineering applications.

70 References

  1. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  2. Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
    Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing
  3. Aslani Farhad, Dale Ryan, Hamidi Fatemeh, Valizadeh Afsaneh (2022-05)
    Mechanical and Shrinkage Performance of 3D Printed Rubberised Engineered Cementitious Composites
  4. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  5. Bohuchval Marie, Sonebi Mohammed, Amziane Sofiane, Perrot Arnaud (2020-12)
    Effect of Metakaolin and Natural Fibers on Three-Dimensional Printing Mortar
  6. Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
    Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications
  7. Bong Shin, Nematollahi Behzad, Xia Ming, Nazari Ali et al. (2019-09)
    Properties of 3D Printable Ductile Fiber-Reinforced Geopolymer Composite for Digital Construction Applications
  8. Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
    Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete
  9. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  10. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  11. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  12. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
    Mechanical Behavior of Printed Strain-Hardening Cementitious Composites
  13. Hager Izabela, Golonka Anna, Putanowicz Roman (2016-08)
    3D Printing of Buildings and Building Components as the Future of Sustainable Construction?
  14. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  15. Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
    Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete
  16. Hoffmann Marcin, Skibicki Szymon, Pankratow Paweł, Zieliński Adam et al. (2020-04)
    Automation in the Construction of a 3D Printed Concrete Wall with the Use of a Lintel Gripper
  17. Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
    A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
    An Experimental and Computational Investigation
  18. Kaszyńska Maria, Skibicki Szymon, Hoffmann Marcin (2020-12)
    3D Concrete Printing for Sustainable Construction
  19. Korniejenko Kinga, Łach Michał, Chou S., Lin Wei-Ting et al. (2019-11)
    A Comparative Study of Mechanical Properties of Fly-Ash-Based Geopolymer Made by Casted and 3D Printing Methods
  20. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  21. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  22. Lesovik Valeriy, Fediuk Roman, Amran Mugahed, Alaskhanov Arbi et al. (2021-12)
    3D Printed Mortars with Combined Steel and Polypropylene Fibers
  23. Li Zhijian, Wang Li, Ma Guowei (2018-05)
    Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar
  24. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  25. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  26. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  27. Liu Xiongfei, Li Qi, Li Jixiang (2022-04)
    Shrinkage and Mechanical Properties Optimization of Spray-Based 3D Printed Concrete by PVA-Fiber
  28. Liu Jie, Lv Chun (2022-03)
    Properties of 3D Printed Polymer Fiber-Reinforced Mortars:
    A Review
  29. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  30. Luhar Salmabanu, Suntharalingam Thadshajini, Navaratnam Satheeskumar, Luhar Ismail et al. (2020-12)
    Sustainable and Renewable Bio-Based Natural Fibers and Its Application for 3D Printed Concrete:
    A Review
  31. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  32. Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
    Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing
  33. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  34. Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
    A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing
  35. Ma Guowei, Wang Li (2017-08)
    A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing
  36. Marchment Taylor, Sanjayan Jay (2018-09)
    Method of Enhancing Inter-Layer Bond Strength in 3D Concrete Printing
  37. Marchment Taylor, Sanjayan Jay (2020-09)
    Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing
  38. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  39. Marczyk Joanna, Ziejewska Celina, Gądek Szymon, Korniejenko Kinga et al. (2021-11)
    Hybrid Materials Based on Fly-Ash, Metakaolin, and Cement for 3D Printing
  40. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
    Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing
  41. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  42. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  43. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  44. Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
    Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing
  45. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  46. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  47. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  48. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  49. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  50. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  51. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  52. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  53. Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
    Microstructural Characterization of 3D Printed Cementitious Materials
  54. Sakka Fatima, Assaad Joseph, Hamzeh Farook, Nakhoul Charbel (2019-07)
    Thixotropy and Interfacial Bond Strengths of Polymer-Modified Printed Mortars
  55. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  56. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
    3D Printed Concrete for Large-Scale Buildings:
    An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects
  57. Sun Xiaoyan, Gao Chao, Wang Hailong (2020-10)
    Bond-Performance Between BFRP-Bars and 3D Printed Concrete
  58. Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
    PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
    Mechanical Properties and Durability
  59. Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
    Time-Gap-Effect on Bond Strength of 3D Printed Concrete
  60. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  61. Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
    Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process
  62. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  63. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  64. Wu Zhengyu, Memari Ali, Duarte José (2022-01)
    State of the Art Review of Reinforcement-Strategies and Technologies for 3D Printing of Concrete
  65. Yalçınkaya Çağlar (2022-03)
    Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement
  66. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  67. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  68. Zareiyan Babak, Khoshnevis Behrokh (2017-08)
    Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
  69. Zhong Hui, Zhang Mingzhong (2022-02)
    3D Printing Geopolymers:
    A Review
  70. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

18 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Sheng Zhaoliang, Ding Shaolong, Zhu Binrong, Cai Jingming et al. (2026-01)
    Bonding Performance of Toothed Interfaces in 3D Printed Alkali-Activated Concrete
  3. Murali Gunasekaran, Kravchenko Ekaterina, Yuvaraj Divya, Avudaiappan Siva (2025-12)
    Next-Generation Green Construction:
    3D-Printed Geopolymer Concrete with Optimized Rheology, Mechanical Performance, and Environmental Efficiency
  4. Hasan Md, Xu Jie, Uddin Md (2025-11)
    A Critical Review of 3D Printed Fiber-Based Geopolymer Concrete:
    Fresh Properties, Mechanical Performance, and Current Limitations
  5. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2025-11)
    Data-Driven Design of Sustainable LC³ for 3D Printing with Omani Clays
  6. Garshasbi Sajad, Mousavi Seyed, Dehestani Mehdi, Nazarpour Hadi (2025-10)
    Sustainable Production of 3D Concrete Printing Using Agricultural Waste Fibers
  7. Rudziewicz Magdalena, Maroszek Marcin, Hebda Marek (2025-09)
    Comparison of Porosity and Thermal Conductivity of Concrete and Alkali-Activated Hybrid Binders in 3D-Printed Fiber-Reinforced Foamed Composites
  8. Tanyildizi Harun, Seloglu Maksut, Bakri Abdullah Mohd, Razak Rafiza et al. (2025-04)
    The Rheological and Mechanical Properties of 3D-Printed Geopolymers:
    A Review
  9. Mortada Youssef, Hammoud Ahmad, Masoud Laith, Wyrzykowski Mateusz et al. (2025-02)
    3D Printable Ca(OH)2-Based Geopolymer Concrete with Steel Fiber Reinforcement
  10. Chourasia Ajay, Pal Biswajit, Kapoor Ashish (2025-02)
    Influence of Printing Direction and Interlayer Printing Time on the Bond Characteristics and Hardened Mechanical Properties of Agro-Industrial Waste-Based 3D Printed Concrete
  11. Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
    Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
    A Review
  12. Li Yeou-Fong, Liang Yu-Fang, Syu Jin-Yuan, Huang Chi-Hong et al. (2024-12)
    Static and Dynamic Mechanical Characteristics of 3D Printed Anisotropic Basalt Fiber-Reinforced Cement Mortar
  13. Aldabergenova Gaziza, Jexembayeva Assel, Konkanov Marat, Kirgizbayev Akpan et al. (2024-09)
    The Efficient Waste-Based Fine-Grained Fiber Concretes for 3D Printing
  14. Dias José, Brandão Filipe, Figueiredo Bruno, Cruz Paulo (2024-09)
    The Potential of Natural Fiber-Reinforcement in 3D Printed Concrete:
    A Review
  15. Masoud Laith, Hammoud Ahmad, Mortada Youssef, Masad Eyad (2024-06)
    Rheological, Mechanical, and Microscopic Properties of Polypropylene-Fiber-Reinforced Geopolymer Concrete for Additive Manufacturing
  16. Ziada Mahmoud, Tanyildizi Harun, Seloglu Maksut, Coskun Ahmet (2024-02)
    Bacteria-Based Crack-Healing of 3D Printed PVA-Fiber-Reinforced Geopolymer Mortars
  17. Wang Fei, Hua Sudong, Chen Tingzhu, He Bijuan et al. (2023-07)
    Effect of Nano-Clay and PCE on the Buildability of Ultra-Fine Dredged Sand-Based 3D Printing Materials
  18. Quah Tan, Tay Yi, Lim Jian, Tan Ming et al. (2023-03)
    Concrete 3D Printing:
    Process-Parameters for Process-Control, Monitoring and Diagnosis in Automation and Construction

BibTeX
@article{lv_shen_liu_wu.2022.Po3PFRGBoILBaA,
  author            = "Chun Lv and Hongtao Shen and Jie Liu and Dan Wu and Enxiang Qu and Shuang Liu",
  title             = "Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy",
  doi               = "10.3390/ma15228032",
  year              = "2022",
  journal           = "Materials",
  volume            = "15",
  number            = "22",
}
Formatted Citation

C. Lv, H. Shen, J. Liu, D. Wu, E. Qu and S. Liu, “Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy”, Materials, vol. 15, no. 22, 2022, doi: 10.3390/ma15228032.

Lv, Chun, Hongtao Shen, Jie Liu, Dan Wu, Enxiang Qu, and Shuang Liu. “Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy”. Materials 15, no. 22 (2022). https://doi.org/10.3390/ma15228032.