A Strategy for the Improvement of the Bonding Performance of 3D Printed Concrete Inter-Layer Interfaces (2024-09)¶
Cao Jing, Shengzhao E., Yang Yi, Shi Yaming, Chai Junrui, Xu Zengguang
Journal Article - Journal of Building Engineering, Vol. 97, No. 110675
Abstract
3D-printed concrete, as an intelligent building technology, has enormous potential in construction. However, the weak bond interfaces between two adjacent layers of concrete are still a well-known problem affecting the mechanical properties of printed structures, with reduced interlayer shear and tensile properties. The reinforcement method of inserting steel bars in vertically printed layers is crucial and requires research and exploration of suitable methods, as well as finding the optimal reinforcement scheme that satisfies the interlayer interface when facing different loads. This study proposes a method of interlayer reinforcement by vertically laying steel fibers between layers, and investigates the effects of steel fiber offset, deployment density, and cross-sectional area on interlayer bonding strength. The strengthening effect of steel fiber on interlayer shear and tensile strength was tested through shear and splitting tests. Microscopic numerical models are used to study the evolution process of interlayer cracking. The correlation between different steel fiber variables and interlayer bonding strength was studied using a Generalized Grey Relational Analysis (GGRA). The results showed that the shear strength and tensile strength of the interlayer interface could be improved by 256.32 % and 353.61 %, respectively, through a reasonable fiber layout scheme. It is recommended to lay steel fibers with small offsets. When the interlayer interface is subjected to shear loads, priority should be given to increasing the cross-sectional area. When the interlayer interface is subjected to tensile loads, the deployment density should be increased first to achieve the best improvement in interlayer strength.
¶
46 References
- Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Cai Jingming, Sheng Zhaoliang, Wang Xiaoyi, Fang Yizhi et al. (2021-12)
Effect of Reinforcement-Configurations on the Flexural Behaviors of 3D Printed Fiber-Reinforced Cementitious Composite Beams - Demont Léo, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2021-01)
Flow-Based Pultrusion of Continuous Fibers for Cement-Based Composite Material and Additive Manufacturing:
Rheological and Technological Requirements - Farahbakhsh Mehdi, Rybkowski Zofia, Zakira Umme, Kalantar Negar et al. (2022-07)
Impact of Robotic 3D Printing Process Parameters on Inter-Layer Bond Strength - Geneidy Omar, Kumarji Sujay, Dubor Alexandre, Sollazzo Aldo (2020-07)
Simultaneous Reinforcement of Concrete While 3D Printing - Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete - Hass Lauri, Bos Freek (2020-07)
Bending and Pull-Out Tests on a Novel Screw Type Reinforcement for Extrusion-Based 3D Printed Concrete - Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
Measurement and Physical Origin - Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
Development of the Construction Processes for Reinforced Additively Constructed Concrete - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement - Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
3D Printing Concrete with Recycled Coarse Aggregates:
The Influence of Pore-Structure on Inter-Layer Adhesion - Lloret-Fritschi Ena, Shahab Amir, Linus Mettler, Flatt Robert et al. (2014-03)
Complex Concrete Structures:
Merging Existing Casting Techniques with Digital Fabrication - Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
A Systematical Review of 3D Printable Cementitious Materials - Lyu Fuyan, Zhao Dongliang, Hou Xiaohui, Sun Li et al. (2021-10)
Overview of the Development of 3D Printing Concrete:
A Review - Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing - Marchment Taylor, Sanjayan Jay (2019-10)
Mesh Reinforcing Method for 3D Concrete Printing - Marchment Taylor, Sanjayan Jay (2021-04)
Reinforcement Method for 3D Concrete Printing Using Paste-Coated Bar Penetrations - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Marchment Taylor, Xia Ming, Dodd Elise, Sanjayan Jay et al. (2017-07)
Effect of Delay-Time on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
3D Printed Steel-Reinforcement for Digital Concrete Construction:
Manufacture, Mechanical Properties and Bond Behavior - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2021-09)
Modelling the Inter-Layer Bond Strength of 3D Printed Concrete with Surface Moisture - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar? - Pan Tinghong, Jiang Yaqing, Ji Xuping (2022-03)
Inter-Layer Bonding Investigation of 3D Printing Cementitious Materials with Fluidity-Retaining Polycarboxylate-Superplasticizer and High-Dispersion Polycarboxylate Superplasticizer - Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Putten Jolien, Azima M., Heede Philip, Mullem T. et al. (2020-06)
Neutron-Radiography to Study the Water-Ingress via the Inter-Layer of 3D Printed Cementitious Materials for Continuous Layering - Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
Microstructural Characterization of 3D Printed Cementitious Materials - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
Correction - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Siddika Ayesha, Mamun Md., Ferdous Wahid, Saha Ashish et al. (2019-12)
3D Printed Concrete:
Applications, Performance, and Challenges - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Tay Yi, Panda Biranchi, Ting Guan, Ahamed N. et al. (2020-10)
3D Printing for Sustainable Construction - Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails - Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
Experiments and Molecular Dynamics Studies - Weng Yiwei, Li Mingyang, Wong Teck, Tan Ming (2021-01)
Synchronized Concrete and Bonding-Agent-Deposition-System for Inter-Layer Bond Strength Enhancement in 3D Concrete Printing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
Microstructural Characterization of 3D Printed Concrete - Zhu Lingli, Zhang Meng, Zhang Yaqi, Yao Jie et al. (2023-07)
Research Progress on Shrinkage Properties of Extruded 3D Printed Cement-Based Materials
9 Citations
- Ke Zhijiang, Li Zichang, Chen Zhengfei, Xu Yao et al. (2025-10)
Technological Advancements and Challenges of Robotic Arm-Based 3D Printing for Hydraulic Tunnel Lining - Yang Rijiao, Xu Chengji, You Xiufei, Li Xinze et al. (2025-09)
Saddle Stitching-Enabled Interfacial Toughening in 3D Printed Concrete - Chan Li-Jing, Padil Khairul, Chin Chee-Long, Ibrahim Izni et al. (2025-09)
Strategies to Enhance Interlayer Bonding in 3D Printed Concrete:
A Review - Ozturk Onur, Lunsford Caleb, Strait James, Nair Sriramya (2025-08)
Breaking Barriers in Underwater Construction:
A Two-Stage 3D Printing System with On-Demand Material Adaptation - Duan Yuhang, Wang Chuan, Yin Binbin, Liew Kim (2025-06)
Modeling Interfacial Failure in 3D-Printed Concrete via Peridynamics - Tarhan Yeşim, Tarhan İsmail, Perrot Arnaud (2025-05)
Flexural Performance of Glass Fiber Textile Reinforced 3D Printed Concrete - An Dong, Rahman Mahfuzur, Zhang Y., Yang Chunhui (2025-05)
Effects of Key 3D Concrete Printing Process Parameters on Layer Shape:
Experimental Study and Smooth Particle Hydrodynamics Modelling - Zhou Wen, Xu Yading, Meng Zhaozheng, Xie Jinbao et al. (2025-03)
Filament Stitching:
An Architected Printing Strategy to Mitigate Anisotropy in 3D-Printed Engineered Cementitious Composites - Mousavi Moein, Bengar Habib, Mousavi Fateme, Mahdavinia Pooneh et al. (2024-12)
Inter-Layer Bond Strength Prediction of 3D Printable Concrete Using Artificial Neural Network:
Experimental and Modeling Study
BibTeX
@article{cao_shen_yang_shi.2024.ASftIotBPo3PCILI,
author = "Jing Cao and E. Shengzhao and Yi Yang and Yaming Shi and Junrui Chai and Zengguang Xu",
title = "A Strategy for the Improvement of the Bonding Performance of 3D Printed Concrete Inter-Layer Interfaces",
doi = "10.1016/j.jobe.2024.110675",
year = "2024",
journal = "Journal of Building Engineering",
volume = "97",
pages = "110675",
}
Formatted Citation
J. Cao, E. Shengzhao, Y. Yang, Y. Shi, J. Chai and Z. Xu, “A Strategy for the Improvement of the Bonding Performance of 3D Printed Concrete Inter-Layer Interfaces”, Journal of Building Engineering, vol. 97, p. 110675, 2024, doi: 10.1016/j.jobe.2024.110675.
Cao, Jing, E. Shengzhao, Yi Yang, Yaming Shi, Junrui Chai, and Zengguang Xu. “A Strategy for the Improvement of the Bonding Performance of 3D Printed Concrete Inter-Layer Interfaces”. Journal of Building Engineering 97 (2024): 110675. https://doi.org/10.1016/j.jobe.2024.110675.