Skip to content

3D Printing and Implementation of Engineered Cementitious Composites (2024-07)

A Review

10.1016/j.cscm.2024.e03462

Asghari Y., Mohammadyan-Yasouj S., Petrů M., Ghandvar H., Koloor S.
Journal Article - Case Studies in Construction Materials, No. e03462

Abstract

While 3D printing of concrete (3DCP) has gained increasing interest in the construction industry, steel reinforcement remains a significant obstacle to 3D printing (3DP) construction. To address this concern, Engineered Cementitious Composites (ECC), also recognized as Strain-Hardening Cementitious Composites (SHCC), can provide structural performance and integrity, safety, durability, and strength without steel reinforcement. The article reviews scientific works on 3DCP using ECC and proposes further investigations to lead to better development. As a result, generally, Poly-Ethylene (PE) fibers are used more frequently because of their strength. Mix design parameters have been extensively examined in relation to fresh ECC rheological characteristics. Due to the printing process, fiber orientation may affect ultimate tensile strain. As compared to casted ones with random fiber orientation, fiber orientation aligned with tensile stress resulted in a higher ultimate tensile strain. Additionally, research showed that ECC including up to 2% fiber can be mixed, extruded, and built. Morovere, results highlighted the comparison between printed ECC containing PVA and PE fibers, the influence of mix design parameters on extrudability, and the impact of fiber length and volume fraction on strain-hardening properties. The text also covers the effects of fiber orientation and nozzle distance on tensile performance and ultimate tensile strain, as well as the anisotropic properties of 3DP-ECC. As well as this, there are some areas that require further research, such as durability and response to a variety of loading conditions, such as seismic loading.

83 References

  1. Anleu Paula, Wangler Timothy, Nerella Venkatesh, Mechtcherine Viktor et al. (2023-03)
    Using Micro-XRF to Characterize Chloride-Ingress Through Cold Joints in 3D Printed Concrete
  2. Aslani Farhad, Dale Ryan, Hamidi Fatemeh, Valizadeh Afsaneh (2022-05)
    Mechanical and Shrinkage Performance of 3D Printed Rubberised Engineered Cementitious Composites
  3. Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
    Rethinking Reinforcement for Digital Fabrication with Concrete
  4. Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
    Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers
  5. Bao Yi, Xu Mingfeng, Soltan Daniel, Xia Tian et al. (2018-09)
    Three-Dimensional Printing Multifunctional Engineered Cementitious Composites (ECC) for Structural Elements
  6. Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
    Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete
  7. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  8. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  9. Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
    Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials
  10. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  11. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  12. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  13. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  14. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
    An Approach to Develop Printable Strain-Hardening Cementitious Composites
  15. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
    Mechanical Behavior of Printed Strain-Hardening Cementitious Composites
  16. Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
    Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution
  17. Hack Norman, Kloft Harald (2020-07)
    Shotcrete 3D Printing Technology for the Fabrication of Slender Fully Reinforced Freeform Concrete Elements with High Surface Quality:
    A Real-Scale Demonstrator
  18. Hambach Manuel, Möller Hendrik, Neumann Thomas, Volkmer Dirk (2016-08)
    Portland-Cement-Paste with Aligned Carbon-Fibers Exhibiting Exceptionally High Flexural Strength (>100 MPa)
  19. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  20. Hamidi Fatemeh, Aslani Farhad (2019-05)
    Additive Manufacturing of Cementitious Composites:
    Materials, Methods, Potentials, and Challenge
  21. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  22. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  23. Ketel Sabrina, Falzone Gabriel, Wang Bu, Washburn Newell et al. (2018-04)
    A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D Printed Components
  24. Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
    Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars
  25. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  26. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  27. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  28. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2020-04)
    A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete
  29. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  30. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  31. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  32. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  33. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  34. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  35. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  36. Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
    Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing
  37. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  38. Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
    3D Concrete Printing:
    Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups
  39. McGee Wesley, Ng Tsz, Yu Kequan, Li Victor (2020-07)
    Extrusion Nozzle Shaping for Improved 3DP of Engineered Cementitious Composites (ECC-SHCC)
  40. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  41. Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
    3D Printed Steel-Reinforcement for Digital Concrete Construction:
    Manufacture, Mechanical Properties and Bond Behavior
  42. Mechtcherine Viktor, Michel Albert, Liebscher Marco, Schneider Kai et al. (2019-11)
    Mineral-Impregnated Carbon-Fiber Composites as Novel Reinforcement for Concrete Construction:
    Material and Automation Perspectives
  43. Mechtcherine Viktor, Nerella Venkatesh, Kasten Knut (2013-12)
    Testing Pumpability of Concrete Using Sliding-Pipe Rheometer
  44. Nerella Venkatesh, Mechtcherine Viktor (2018-03)
    Virtual Sliding-Pipe Rheometer for Estimating Pumpability of Concrete
  45. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  46. Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
    Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing
  47. Overmeir Anne, Figueiredo Stefan, Šavija Branko, Bos Freek et al. (2022-02)
    Design and Analyses of Printable Strain-Hardening Cementitious Composites with Optimized Particle-Size-Distribution
  48. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  49. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  50. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  51. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  52. Pegna Joseph (1997-02)
    Exploratory Investigation of Solid Freeform Construction
  53. Putten Jolien, Schutter Geert, Tittelboom Kim (2018-09)
    The Effect of Print Parameters on the (Micro)structure of 3D Printed Cementitious Materials
  54. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  55. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  56. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  57. Rushing Todd, Chaar Ghassan, Eick Brian, Burroughs Jedadiah et al. (2017-01)
    Investigation of Concrete Mixtures for Additive Construction
  58. Schröfl Christof, Nerella Venkatesh, Mechtcherine Viktor (2018-09)
    Capillary Water Intake by 3D Printed Concrete Visualised and Quantified by Neutron Radiography
  59. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  60. Secrieru Egor, Cotardo Dario, Mechtcherine Viktor, Lohaus Ludger et al. (2018-04)
    Changes in Concrete Properties During Pumping and Formation of Lubricating Material Under Pressure
  61. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
    A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar
  62. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  63. Sun Junbo, Aslani Farhad, Lu Jenny, Wang Lining et al. (2021-06)
    Fiber-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing
  64. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  65. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  66. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  67. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  68. Xiao Jianzhuang, Bai Meiyan, Wu Yuching, Duan Zhenhua et al. (2024-01)
    Inter-Layer Bonding Strength and Pore Characteristics of 3D Printed Engineered Cementitious Composites
  69. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  70. Xu Nuoyan, Qian Ye (2023-04)
    Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites
  71. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  72. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  73. Yu Jing, Leung Christopher (2018-09)
    Impact of 3D Printing-Direction on Mechanical Performance of Strain-Hardening Cementitious Composite (SHCC)
  74. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  75. Zhang Yifan, Aslani Farhad (2021-08)
    Development of Fiber-Reinforced Engineered Cementitious Composite Using Polyvinyl-Alcohol-Fiber and Activated Carbon-Powder for 3D Concrete Printing
  76. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  77. Zhang Hanghua, Xiao Jianzhuang (2021-08)
    Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand
  78. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  79. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites
  80. Zhu Binrong, Pan Jinlong, Li Junrui, Wang Penghui et al. (2022-07)
    Relationship Between Microstructure and Strain-Hardening Behavior of 3D Printed Engineered Cementitious Composites
  81. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  82. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D
  83. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites

10 Citations

  1. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  2. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  3. Liu Renlong, Cheng Zhangqi (2025-10)
    Interlayer Fracture Properties of 3D-Printed Cement-Based Structures:
    Influencing Factors and Mechanisms
  4. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  5. Ingle Vaibhav, Prem Prabhat (2025-07)
    Acoustic Emission Examination of 3D Printed Ultra-High Performance Concrete with and Without Coarse Aggregate Under Fresh and Hardened States
  6. Gomez Jaramillo Laura, Luković Mladena, Šavija Branko, Zhou Wen (2025-06)
    Recycled Sand for 3D-Printed Strain Hardening Cementitious Composite:
    A Review of Recent Developments
  7. Ye Huzi, He Qianpeng, Ping Pengxin, Pan Jinlong et al. (2025-06)
    Anisotropic Flexural Behavior and Energy Absorption of 3D Printed Engineered Cementitious Composites (3DP-ECC) Beams Under Low-Velocity Impact
  8. Kim Tae, Oh Sangwoo, Lee Jinsuk, Dong Won-Jun et al. (2025-05)
    Effects of 3D-Printed Concrete Permanent Formwork on the Flexural Behavior of Reinforced Concrete Beams:
    Experimental and Analytical Investigations
  9. Zhang Yuying, Zhu Xiaohong, Li Muduo, Zhang Chao et al. (2025-04)
    3D Printing Technology in Concrete Construction
  10. Du Guoqiang, Sun Yan, Qian Ye (2025-03)
    In-Plane and Out-of-Plane Compressive Performance of Bio-Inspired 3D Printed Strain-Hardening Cementitious Composite Lattice Structures

BibTeX
@article{asgh_moha_petr_ghan.2024.3PaIoECC,
  author            = "Y. Asghari and S. E. Mohammadyan-Yasouj and M. Petrů and H. Ghandvar and S. S. R. Koloor",
  title             = "3D Printing and Implementation of Engineered Cementitious Composites: A Review",
  doi               = "10.1016/j.cscm.2024.e03462",
  year              = "2024",
  journal           = "Case Studies in Construction Materials",
  pages             = "e03462",
}
Formatted Citation

Y. Asghari, S. E. Mohammadyan-Yasouj, M. Petrů, H. Ghandvar and S. S. R. Koloor, “3D Printing and Implementation of Engineered Cementitious Composites: A Review”, Case Studies in Construction Materials, p. e03462, 2024, doi: 10.1016/j.cscm.2024.e03462.

Asghari, Y., S. E. Mohammadyan-Yasouj, M. Petrů, H. Ghandvar, and S. S. R. Koloor. “3D Printing and Implementation of Engineered Cementitious Composites: A Review”. Case Studies in Construction Materials, 2024, e03462. https://doi.org/10.1016/j.cscm.2024.e03462.