Skip to content

Shrinkage Behavior of Cementitious 3D Printing Materials (2021-09)

Effect of Temperature and Relative Humidity

10.1016/j.cemconcomp.2021.104238

 Shahmirzadi Mohsen,  Gholampour Aliakbar,  Kashani Alireza,  Ngo Tuan
Journal Article - Cement and Concrete Composites, Vol. 124

Abstract

Extrusion-based concrete 3D printing is at its infancy and many aspects of this new technology need to be thoroughly investigated to pave the way for its widespread use in construction. Since the inherent drying shrinkage of the hardened cement paste is the source of the drying shrinkage of 3D printed concrete, the shrinkage behavior of cementitious 3D printing materials with very high cement to fine aggregate ratios is one of the major challenges for researchers working on this innovative technology. Besides, due to the absence of formwork in this technique, an outdoor 3D printing environment causes excessive moisture loss and drying shrinkage cracking. This paper presents the first comprehensive investigation on the effects of different outdoor environmental conditions i.e. relative humidity (RH) and temperature on the moisture loss, drying and autogenous shrinkage of cementitious 3D printing materials, considering different sand to cement (S/C), and surface to volume (S/V) ratios of free-formed specimens. Mass loss and length change of mortars which were cured for up to 168 days under standard condition (24 ̊C-50%RH with 24 h of sealed initial curing) were compared with those at 24 ̊C-50%RH, 35 ̊C-85%RH and 35 ̊C-45%RH (free-formed specimens without initial curing) to investigate the effect of outdoor printing environment and the absence of formworks on the deformations caused by shrinkage. The drying shrinkage results indicate that 28 days free-formed specimens under different non-standard curing conditions show a length change up to 30% lower than specimens in the standard environment. Moreover, increasing the sand to cement ratio from 0.8 to 1.0 results in a 10% decrease in the drying shrinkage strain. This study also discusses the higher susceptibility of free-formed specimens to carbonation shrinkage and demonstrates that printed specimens have higher shrinkage deformation in the longer term compared to conventional casting specimens. The results of nitrogen adsorption-desorption analysis also prove that the total porosity in free-formed specimens in all environmental conditions reduces and reaches a finer pore structure after 112 days compared to conventional casting specimens. These results point to the importance of internal or external curing for reducing shrinkage in concrete 3D printing.

24 References

  1. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  2. Buswell Richard, Soar Rupert, Gibb Alistar, Thorpe Tony (2006-06)
    Freeform Construction:
    Mega-Scale Rapid Manufacturing for Construction
  3. Federowicz Karol, Kaszyńska Maria, Zieliński Adam, Hoffmann Marcin (2020-06)
    Effect of Curing Methods on Shrinkage Development in 3D Printed Concrete
  4. Kashani Alireza, Ngo Tuan (2017-07)
    Optimization of Mixture-Properties for 3D Printing of Geopolymer Concrete
  5. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  6. Kim Kwan, Yeon Jaeheum, Lee Hee, Yeon Jung (2019-08)
    Dimensional Stability of SBR-Modified Cementitious Mixtures for Use in 3D Additive Construction
  7. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication
  8. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  9. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  10. Ma Siwei, Kawashima Shiho (2018-09)
    Rheological and Water Transport Properties of Cement-Pastes Modified with Diutan Gum and Attapulgite-Palygorskite-Nano-Clay for 3D Concrete Printing
  11. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  12. Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
    A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing
  13. Ma Guowei, Wang Li (2017-08)
    A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing
  14. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  15. Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
    Current Progress of 3D Concrete Printing Technologies
  16. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  17. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  18. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  19. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  20. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  21. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  22. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  23. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  24. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

55 Citations

  1. Ding Yao, Liu Yifan, Yang Bo, Liu Jiepeng et al. (2026-01)
    Application of Artificial Intelligence Technology in 3D Concrete Printing Quality Inspection and Control:
    A State-of-the-Art Review
  2. Xu Fengming, Yu Jie, Teng Fei, Lin Xiaoshan et al. (2025-12)
    Application of Recycled Tile as Internal Curing Material in 3D-Printed Engineered Cementitious Composites
  3. Xia Kailun, Chen Yuning, Jia Lutao, Quan Shitao et al. (2025-10)
    The Impact of Internal Stress Generated During the Printing Process on the Early-Age Properties of 3D Printed Concrete
  4. Barbhuiya Salim, Das Bibhuti, Adak Dibyendu (2025-09)
    Key Variables Influencing the Performance of 3D Printed Concrete:
    A Comprehensive Analysis
  5. Kiyani Muhammad, Hussain Syed, Emaan Rajja, Kamal Muhammad et al. (2025-08)
    Influence of Process Parameters on 3D Concrete Printing:
    A Step Towards Standardized Approaches
  6. Mesoudy Mouad, Rida Foulki, Driss Amegouz (2025-07)
    Addressing Geometrical and Dimensional Accuracy Challenges in 3D Concrete Printing
  7. Kaur Zinnia, Goyal Shweta, Kwatra Naveen, Bera Tarun (2025-07)
    Pore Structure Analysis and Durability Performance of Sustainable 3D Printed Concrete Incorporating Fly Ash and Limestone Calcined Clay Based Binders
  8. Šána Vladimír, Litoš Jiří (2025-07)
    Load-Bearing Capacity of the 3D Printed Concrete Structure Based on a Static Assessment and Load Test in Scale 1:1
  9. Versteege Jelle, Wolfs Robert, Salet Theo (2025-06)
    Data-Driven Additive Manufacturing with Concrete - Enhancing In-Line Sensory Data with Domain Knowledge:
    Part II: Moisture and Heat
  10. Els Heinrich, Zijl Gideon, Villiers Wibke (2025-06)
    A Review of Shrinkage and Restrained Shrinkage Cracking in 3D Concrete Printing
  11. Kuang Hao, Deng Yang, Wang Dong, Jian Shouwei et al. (2025-05)
    Strengthening Effect of In-Situ Sprayed UV-Curable Polyurethane-Acrylate Resin Coating on Slag-Based 3D Printing Concrete
  12. Das B., Prathap Y., Sandeep Ankit, Vaghamshi Keval et al. (2025-05)
    Reviewing the Materials Selection, Rheology, Durability, and Microstructural Characteristics of 3D Printed Concrete
  13. Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
    From Printing to Performance:
    A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment
  14. Tanyildizi Harun, Seloglu Maksut, Bakri Abdullah Mohd, Razak Rafiza et al. (2025-04)
    The Rheological and Mechanical Properties of 3D-Printed Geopolymers:
    A Review
  15. Givkashi Mohammad, Moodi Faramarz, Ramezanianpour Amir (2025-03)
    Investigating Shrinkage and Mechanical Properties of 3D Printed Concretes Under Different Curing Conditions
  16. Skripkiūnas Gintautas, Tolegenova Aigerim, Rishko Lyudmyla, Akmalaiuly Kenzhebek et al. (2025-03)
    Durability and Cracking Defects in 3D-Printed Concrete
  17. Banijamali Kasra, Dempsey Mary, Chen Jianhua, Kazemian Ali (2025-02)
    Machine Learning Approach to Predict the Early-Age Flexural Strength of Sensor-Embedded 3D-Printed Structures
  18. Bayat Hamid, Karimpouli Sagegh, Yang Liming, Ramandi Hamed et al. (2025-02)
    Investigation of Interlayer Bonding and Pore Characteristics in 3D-Printed High-Strength Mortar Incorporating Recycled Lightweight Aggregates
  19. Versteege Jelle, Wolfs Robert, Salet Theo (2025-02)
    Data-Driven Additive Manufacturing with Concrete - Enhancing In-Line Sensory Data with Domain Knowledge:
    Part I: Geometry
  20. Ambily Parukutty, Kaliyavaradhan Senthil, Sebastian Shilpa, Shekar Deepadharshan (2025-01)
    Sustainable 3D Printable Concrete-Mix Using Copper-Slag
  21. Vargas Armando, Robayo-Salazar Rafael, Gutiérrez Ruby (2024-12)
    Effects of Incorporating Fine Aggregates and Polypropylene-Micro-Fibers on the Cracking-Control of 3D Printed Cementitious Mixtures
  22. Zhou Longfei, Gou Mifeng, Zhang Haibo, Hama Yukio (2024-12)
    Investigation of Activated Bauxite-Tailings for Application in 3D Printed Concrete via a Modified Anderson and Anderson-Model
  23. Sun Zhaoyang, Zhao Yuyang, Hou Dongshuai, Li Zongjin et al. (2024-11)
    Rheology-Control of Cement-Paste by In-Situ Polymerization for 3D Printing Applications
  24. Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
    Sustainability Principles in 3D Concrete Printing:
    Analysing Trends, Classifying Strategies, and Future Directions
  25. Harbouz Ilhame, Alam Syed, Loukili Ahmed (2024-09)
    Influence of Printing Parameters on Early-Age Shrinkage in 3D Printed Mortar
  26. Lachmayer Lukas, Quantz Jelle, Heeren Hauke, Recker Tobias et al. (2024-09)
    A Spatial Multi-Layer Control-Concept for Strand-Geometry-Control in Robot-Based Additive Manufacturing-Processes
  27. Wei Yazhi, Zhang Hui (2024-09)
    Influence of Temperature and Humidity on Mechanical Properties of Calcined-Oyster-Shell-Powder-Modified 3D Printed Concrete
  28. Hou Shaodan, Wu Wenbo, Duan Zhenhua, Zhou Shuai et al. (2024-09)
    Rheology of Fiber-Reinforced Mortar for 3D Printing Construction:
    Effect of Recycled Hybrid-Powder and Polyethylene-Fiber
  29. Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
    Porosity and Durability Tests on 3D Printing Concrete:
    A Review
  30. Rudziewicz Magdalena, Maroszek Marcin, Setlak (nee Pławecka) Kinga, Góra Mateusz et al. (2024-08)
    Optimization of Foams-Polypropylene Fiber-Reinforced Concrete Mixtures Dedicated for 3D Printing
  31. Banijamali Kasra, Vosoughi Payam, Arce Gabriel, Noorvand Hassan et al. (2024-08)
    Automated Strength Monitoring of 3D Printed Structures via Embedded Sensors
  32. Bekaert Michiel, Tittelboom Kim, Schutter Geert (2024-07)
    Influence of Curing Conditions on the Shrinkage Behavior of Three-Dimensional Printed Concrete Formwork
  33. Luo Qiling, Yu Ke-Ke, Long Wujian, Zheng Shuyi et al. (2024-07)
    Influence of Different Types of Superabsorbent Polymers on Fresh Mechanical Properties and Inter-Layer Adhesion of 3D Printed Concrete
  34. Bong Shin, Du Hongjian (2024-06)
    Sustainable Additive Manufacturing of Concrete with Low-Carbon Materials
  35. Chen Yuxuan, Zhang Longfei, Wei Kai, Gao Huaxing et al. (2024-04)
    Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide
  36. Sun Bochao, Dominicus Randy, Dong Enlai, Li Peichen et al. (2024-04)
    Predicting the Strength Development of 3D Printed Concrete Considering the Synergistic Effect of Curing-Temperature and Humidity:
    From Perspective of Modified Maturity-Model
  37. Figueiredo Karoline, Hammad Ahmed, Haddad Assed (2024-02)
    Concluding Overview:
    Advancements in Building Materials Technology
  38. Jia Lutao, Jia Zijian, Zhang Zedi, Tang Zhenzhong et al. (2024-02)
    Effect of Recycled Brick-Powder with Various Particle-Features on Early-Age Hydration, Water-State, and Rheological Properties of Blended Cement-Paste in the Context of 3D Printing
  39. Zhou Longfei, Gou Mifeng, Ji Jiankai, Hou Xinran et al. (2024-02)
    Durability and Hardened Properties of 3D Printed Concrete Containing Bauxite-Tailings
  40. Eugenin Claudia, Cuevas Villalobos Karla, Navarrete Iván (2023-12)
    Temperature-Dependance of 3D Printed Concrete Produced with Copper-Tailings
  41. Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2023-10)
    Geopolymer Mortars for Use in Construction 3D Printing:
    Effect of LSS, Graphene-Oxide and Nano-Clay at Different Environmental Conditions
  42. Bayat Hamid, Kashani Alireza (2023-09)
    Analysis of Rheological Properties and Printability of a 3D Printing Mortar Containing Silica-Fume, Hydrated Lime, and Blast-Furnace-Slag
  43. Jia Zijian, Zhang Zedi, Jia Lutao, Cao Ruilin et al. (2023-09)
    Effect of Different Expansive Agents on the Early-Age Structural Build-Up Process of Cement-Paste
  44. Zhu Lingli, Zhang Meng, Zhang Yaqi, Yao Jie et al. (2023-07)
    Research Progress on Shrinkage Properties of Extruded 3D Printed Cement-Based Materials
  45. Soares Augusto, Rodrigues Ana, Costa Hugo, Carmo Ricardo et al. (2023-06)
    Bond Between Layers of Cementitious Mortars Developed for 3D Printing
  46. Quah Tan, Tay Yi, Lim Jian, Tan Ming et al. (2023-03)
    Concrete 3D Printing:
    Process-Parameters for Process-Control, Monitoring and Diagnosis in Automation and Construction
  47. Şahin Hatice, Mardani Ali (2023-02)
    Mechanical Properties, Durability Performance and Inter-Layer Adhesion of 3DPC Mixtures:
    A State‐of‐the‐art Review
  48. Li Zhengrong, Xing Wenjing, Sun Jingting, Feng Xiwen (2022-12)
    Multi-Scale Structural Characteristics and Heat-Moisture Properties of 3D Printed Building Walls:
    A Review
  49. Ma Lei, Zhang Qing, Lombois-Burger Hélène, Jia Zijian et al. (2022-09)
    Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage
  50. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  51. Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
    Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite
  52. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  53. Bi Minghao, Tran Jonathan, Xia Lingwei, Ma Guowei et al. (2022-06)
    Topology-Optimization for 3D Concrete Printing with Various Manufacturing-Constraints
  54. Zhang Hanghua, Xiao Jianzhuang, Duan Zhenhua, Zou Shuai et al. (2022-06)
    Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar
  55. Chen Mingxu, Li Haisheng, Yang Lei, Wang Shoude et al. (2022-03)
    Rheology and Shape-Stability-Control of 3D Printed Calcium-Sulphoaluminate-Cement Composites Containing Paper-Milling-Sludge

BibTeX
@article{shah_ghol_kash_ngo.2021.SBoC3PM,
  author            = "Mohsen Rezaei Shahmirzadi and Aliakbar Gholampour and Alireza Kashani and Tuan D. Ngo",
  title             = "Shrinkage Behavior of Cementitious 3D Printing Materials: Effect of Temperature and Relative Humidity",
  doi               = "10.1016/j.cemconcomp.2021.104238",
  year              = "2021",
  journal           = "Cement and Concrete Composites",
  volume            = "124",
}
Formatted Citation

M. R. Shahmirzadi, A. Gholampour, A. Kashani and T. D. Ngo, “Shrinkage Behavior of Cementitious 3D Printing Materials: Effect of Temperature and Relative Humidity”, Cement and Concrete Composites, vol. 124, 2021, doi: 10.1016/j.cemconcomp.2021.104238.

Shahmirzadi, Mohsen Rezaei, Aliakbar Gholampour, Alireza Kashani, and Tuan D. Ngo. “Shrinkage Behavior of Cementitious 3D Printing Materials: Effect of Temperature and Relative Humidity”. Cement and Concrete Composites 124 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104238.