Skip to content

Exploring Fresh and Hardened Properties of Sustainable 3D Printed Lightweight Cementitious Mixtures (2023-10)

10.3390/su151914425

 Sedghi Reza,  Zafar Muhammad,  Hojati Maryam
Journal Article - Sustainability, Vol. 15, Iss. 19, No. 14425

Abstract

This study investigates using lightweight concrete in 3D printing to reduce transportation costs and maintain structural strength. Normal-weight river (RS) sand was replaced with pumice and expanded glass at 50% and 100% volumes to decrease the material density. This substitution reduced the weight of various mixes up to 25.1%, with apparent porosity ranging from 11.37% to 27.9%. This study found that aggregate characteristics, including the shape, size, and absorption capacity, influenced printability. Rounded aggregates like expanded glass flowed better and required less water than irregular pumice. Lightweight aggregates had finer textures and higher porosity, needing more water. According to the extrudability results, the best print quality was achieved using 100% expanded glass, incorporating methylcellulose (MC) and polyethylene (PE) fibers. Moreover, the buildability outcomes highlighted a reliance on the printing speed and the water-to-binder (W/B) ratio. Comparing cast and 3D printed specimens, cast concrete reached a maximum compressive strength of 65.6 MPa, while 3D printed concrete achieved a maximum strength of 43.4 MPa. RS had the highest strength (65.6 MPa), while expanded glass showed the lowest (17.5 MPa) in both cast and 3D printed specimens. Adding PE and MC enhanced the print quality and increased the compressive strength due to the fibers’ bridging capacity.

43 References

  1. Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
    Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers
  2. Bakhshi Amir, Sedghi Reza, Hojati Maryam (2021-06)
    A Preliminary Study on the Mix-Design of 3D Printable Engineered Cementitious Composite
  3. Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
    Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography
  4. Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
    3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
    Rheological, Thermal and Mechanical Properties
  5. Dielemans Gido, Briels David, Jaugstetter Fabian, Henke Klaudius et al. (2021-04)
    Additive Manufacturing of Thermally Enhanced Lightweight Concrete Wall Elements with Closed Cellular Structures
  6. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
    An Approach to Develop Printable Strain-Hardening Cementitious Composites
  7. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  8. Hambach Manuel, Rutzen Matthias, Volkmer Dirk (2019-02)
    Properties of 3D-Printed Fiber-Reinforced Portland Cement-Paste
  9. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  10. Henke Klaudius, Talke Daniel, Matthäus Carla (2020-07)
    Additive Manufacturing by Extrusion of Lightweight Concrete:
    Strand Geometry, Nozzle Design and Layer Layout
  11. Hua Tianran, Lin Alexander, Poh Wen, Wong De et al. (2023-06)
    3D Printed Concrete Shear Keys:
    Design and Experimental Study
  12. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  13. Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
    Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars
  14. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  15. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  16. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  17. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  18. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  19. Marais Hannelie, Christen Heidi, Cho Seung, Villiers Wibke et al. (2021-03)
    Computational Assessment of Thermal Performance of 3D Printed Concrete Wall Structures with Cavities
  20. Mohammad Malek, Masad Eyad, Seers Thomas, Ghamdi Sami (2020-07)
    High-Performance Lightweight Concrete for 3D Printing
  21. Najvani Mohammad, Murcia Daniel, Soliman Eslam, Taha Mahmoud (2023-06)
    Early-Age Strength and Failure Characteristics of 3D Printable Polymer Concrete
  22. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  23. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  24. Prasittisopin Lapyote, Sakdanaraseth Thanut, Horayangkura Vimolsiddhi (2021-06)
    Design and Construction Method of a 3D Concrete Printing Self-Supporting Curvi-Linear Pavilion
  25. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  26. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  27. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
    Mechanical Characterization of 3D Printable Concrete
  28. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  29. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  30. Senthilnathan Shanmugaraj, Raphael Benny (2022-11)
    Using Computer-Vision for Monitoring the Quality of 3D Printed Concrete Structures
  31. Shakor Pshtiwan, Nejadi Shami, Sutjipto Sheila, Paul Gavin et al. (2020-01)
    Effects of Deposition-Velocity in the Presence-Absence of E6-Glass-Fiber on Extrusion-Based 3D Printed Mortar
  32. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  33. Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
    Utilization of Recycled Glass for 3D Concrete Printing:
    Rheological and Mechanical Properties
  34. Tuvayanond Wiput, Prasittisopin Lapyote (2023-02)
    Design for Manufacture and Assembly of Digital Fabrication and Additive Manufacturing in Construction:
    A Review
  35. Wang Li, Jiang Hailong, Li Zhijian, Ma Guowei (2020-02)
    Mechanical Behaviors of 3D Printed Lightweight Concrete Structure with Hollow Section
  36. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  37. Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
    Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
    A Cleaner Perspective on 3D Printing
  38. Yalçınkaya Çağlar (2022-03)
    Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement
  39. Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
    A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar
  40. Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2022-09)
    Toward 3D Printable Engineered Cementitious Composites:
    Mix-Design Proportioning, Flowability, and Mechanical Performance
  41. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  42. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  43. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

11 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review
  3. Zafar Tayyab, Zafar Muhammad, Hojati Maryam (2025-07)
    Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions
  4. Mim Nusrat, Shaikh Faiz, Sarker Prabir (2025-03)
    Sustainable 3D Printed Concrete Incorporating Alternative Fine Aggregates:
    A Review
  5. Zafar Muhammad, Shahid Adnan, Sedghi Reza, Hojati Maryam (2025-03)
    Optimization of Biopolymer Additives for 3D Printable Cementitious Systems:
    A Design of Experiment Approach
  6. Bakhshi Amir, Zafar Muhammad, Hojati Maryam (2025-02)
    A Study on Achieving High Tensile Ductility in 3D-Printable Engineered Cementitious Composites Reinforced with 8mm Fibers
  7. Pepe Marco, Lombardi Rosario, Lima Carmine, Paolillo Bruno et al. (2025-01)
    Experimental Evidence on the Possible Use of Fine Concrete and Brick Recycled Aggregates for 3D Printed Cement-Based Mixtures
  8. Lori Ali, Mehrali Mehdi (2025-01)
    Filament-Geometry-Control of Printable Geopolymer Using Experimental and Data-Driven Approaches
  9. Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
    Sustainability Principles in 3D Concrete Printing:
    Analysing Trends, Classifying Strategies, and Future Directions
  10. Murali Gunasekaran, Leong Sing (2024-11)
    Waste-Driven Construction:
    A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development
  11. Cuevas Villalobos Karla, Chung Sang-Yeop, Sikora Paweł, Stephan Dietmar (2024-10)
    Performance of Normal-Weight and Lightweight 3D Printed Cementitious Composites with Recycled Glass:
    Sorption and Microstructural Perspective

BibTeX
@article{sedg_zafa_hoja.2023.EFaHPoS3PLCM,
  author            = "Reza Sedghi and Muhammad Saeed Zafar and Maryam Hojati",
  title             = "Exploring Fresh and Hardened Properties of Sustainable 3D Printed Lightweight Cementitious Mixtures",
  doi               = "10.3390/su151914425",
  year              = "2023",
  journal           = "Sustainability",
  volume            = "15",
  number            = "19",
  pages             = "14425",
}
Formatted Citation

R. Sedghi, M. S. Zafar and M. Hojati, “Exploring Fresh and Hardened Properties of Sustainable 3D Printed Lightweight Cementitious Mixtures”, Sustainability, vol. 15, no. 19, p. 14425, 2023, doi: 10.3390/su151914425.

Sedghi, Reza, Muhammad Saeed Zafar, and Maryam Hojati. “Exploring Fresh and Hardened Properties of Sustainable 3D Printed Lightweight Cementitious Mixtures”. Sustainability 15, no. 19 (2023): 14425. https://doi.org/10.3390/su151914425.