Characterizing the Bond Properties of Automatically Placed Helical Reinforcement in 3D Printed Concrete (2022-09)¶
10.1016/j.conbuildmat.2022.129228
, ,
Journal Article - Construction and Building Materials, Vol. 355
Abstract
The incompatibility of 3D concrete printing (3DCP) with conventional reinforcement methods is well known. Recently, solutions have suggested the insertion of helical reinforcement rods through a screwing motion into the freshly printed material. The current study focuses on the bond properties of such reinforcement and its relation to placement time relative to the 3D printed concrete age, of which until now hardly any data exists. Confined pull-out tests and micro-computed tomography (μCT) scans were performed to characterize the time-dependent bond properties for automatically placed screw-type reinforcement in 3D printed concrete in the range of 0–200 min after material deposition. An experimental program was carried out using a gantry type 3D concrete printer and a robotic hand with the Automated Screwing Device to automate the reinforcement placement process. In total 200 specimens were produced and tested in pull-out. μCT scans were done on the specimens to quantify air content in the vicinity of the reinforcement, for every other time stamp. Two different screw geometries were used. A high mechanical interlock was achieved resulting in a high bond strength in confined pull-out tests. It was concluded from the confined pull-out tests that the pull-out performance is not influenced significantly by the time of application after mortar deposition in a time frame of up to 200 min. This firmly positions automatically applied helical reinforcement as a viable method to reinforce 3DCP structures.
¶
37 References
- Ahmed Zeeshan, Wolfs Robert, Bos Freek, Salet Theo (2021-11)
A Framework for Large-Scale Structural Applications of 3D Printed Concrete:
The Case of a 29m Bridge in the Netherlands - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction - Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
3D Printing of Reinforced Concrete Elements:
Technology and Design Approach - Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
Rethinking Reinforcement for Digital Fabrication with Concrete - Baz Bilal, Aouad Georges, Leblond Philippe, Mansouri Omar et al. (2020-05)
Mechanical Assessment of Concrete:
Steel Bonding in 3D Printed Elements - Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete - Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers - Bos Freek, Dezaire Steven, Ahmed Zeeshan, Hoekstra Anne et al. (2020-07)
Bond of Reinforcement-Cable in 3D Printed Concrete - Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars - Bos Freek, Menna Costantino, Pradena Mauricio, Kreiger Eric et al. (2022-03)
The Realities of Additively Manufactured Concrete Structures in Practice - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Buswell Richard, Bos Freek, Silva Wilson, Hack Norman et al. (2022-01)
Digital Fabrication with Cement-Based Materials:
Process Classification and Case Studies - Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete - Craveiro Flávio, Duarte José, Bártolo Helena, Bartolo Paulo (2019-04)
Additive Manufacturing as an Enabling Technology for Digital Construction:
A Perspective on Construction 4.0 - Demont Léo, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2021-01)
Flow-Based Pultrusion of Continuous Fibers for Cement-Based Composite Material and Additive Manufacturing:
Rheological and Technological Requirements - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
Mechanical Behavior of Printed Strain-Hardening Cementitious Composites - Freund Niklas, Mai (née Dressler) Inka, Lowke Dirk (2020-07)
Studying the Bond Properties of Vertical Integrated Short Reinforcement in the Shotcrete 3D Printing Process - Geneidy Omar, Kumarji Sujay, Dubor Alexandre, Sollazzo Aldo (2020-07)
Simultaneous Reinforcement of Concrete While 3D Printing - Grasser Georg, Pammer Lorenz, Köll Harald, Werner E. et al. (2020-07)
Complex Architecture in Printed Concrete:
The Case of the Innsbruck University 350th Anniversary Pavilion COHESION - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Hass Lauri, Bos Freek (2020-07)
Bending and Pull-Out Tests on a Novel Screw Type Reinforcement for Extrusion-Based 3D Printed Concrete - Hass Lauri, Bos Freek (2022-06)
Robotically Placed Reinforcement Using the Automated Screwing Device:
An Application Perspective for 3D Concrete Printing - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites - Marchment Taylor, Sanjayan Jay (2020-09)
Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing - Marchment Taylor, Sanjayan Jay (2019-10)
Mesh Reinforcing Method for 3D Concrete Printing - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Mechtcherine Viktor, Buswell Richard, Kloft Harald, Bos Freek et al. (2021-02)
Integrating Reinforcement in Digital Fabrication with Concrete:
A Review and Classification Framework - Mechtcherine Viktor, Michel Albert, Liebscher Marco, Schmeier Tobias (2020-06)
Extrusion-Based Additive Manufacturing with Carbon Reinforced Concrete:
Concept and Feasibility Study - Mechtcherine Viktor, Tittelboom Kim, Kazemian Ali, Kreiger Eric et al. (2022-04)
A Roadmap for Quality-Control of Hardening and Hardened Printed Concrete - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
Nailing of Layers:
A Promising Way to Reinforce Concrete 3D Printing Structures - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Wolfs Robert, Bos Freek, Salet Theo (2018-06)
Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
25 Citations
- Deng North, Wang Sizhe, Li Mingyang, Wang Xiangyu et al. (2025-12)
A Perforated Strip-Based Three-Dimensional Reinforcement Strategy for 3D Printed Concrete:
Flexural Testing of Beams as a Proof of Concept - Syed Sajid, Abid Khasim, Khan Majid (2025-09)
An Interpretable Machine Learning Approach for Predicting Reinforcement Bond Performance in 3D Concrete Printing - Yang Rijiao, Xu Chengji, Fang Sen, Li Xinze et al. (2025-07)
Mechanistic Insights into Microstructural Changes Caused by Stapling in Extrusion-Based 3D Printed Concrete (3DPC) - Liu Qiong, Singh Amardeep, Wang Qiming, Qifeng Lyu (2025-05)
3D-Printed Application in Concretes - Liu Qiong, Wang Qiming, Sun Chang, Singh Amardeep et al. (2025-04)
Compressive Performance and Damage Evolution of Concrete Short Columns with Shell-Filling Structure Confined by Continuous Fiber Reinforced 3D Printed Mortar - Zhou Wen, Xu Yading, Meng Zhaozheng, Xie Jinbao et al. (2025-03)
Filament Stitching:
An Architected Printing Strategy to Mitigate Anisotropy in 3D-Printed Engineered Cementitious Composites - Caron Jean-François, Ducoulombier Nicolas, Demont Léo (2025-01)
Reinforcement of Printed Structures - Kloft Harald, Sawicki Bartłomiej, Bos Freek, Dörrie Robin et al. (2024-09)
Interaction of Reinforcement, Process, and Form in Digital Fabrication with Concrete - Ma Xin-Rui, Wang Xian-Lin, Chen Shi-Zi (2024-09)
Trustworthy Machine Learning-Enhanced 3D Concrete Printing:
Predicting Bond Strength and Designing Reinforcement Embedment Length - Freund Niklas, David Martin, Dröder Klaus, Lowke Dirk (2024-09)
Vibrated Short Rebar Insertion:
The Effect of Integration Time on the Resulting Bond Quality - Saelens Lien, Wan-Wendner Roman, Caspeele Robby, Tittelboom Kim (2024-09)
Material-Volume Reduction with Additive Manufacturing:
Challenges for Structural Application - Tasaki Haruto, Asakawa Tomoya, Kobayashi Noriyuki, Nishiwaki Tomoya et al. (2024-09)
A Direction-Independent Reinforcement by Combination of Fiber-Reinforced Cementitious Composite and Automated Pin Insertion - Huseien Ghasan, Tan Shea, Saleh Ali, Lim Nor et al. (2024-08)
Test-Procedures and Mechanical Properties of Three-Dimensional Printable Concrete Enclosing Different Mix-Proportions:
A Review and Bibliometric Analysis - Nghia Vuong, Lim Jian, Nam Nguyen, Lu Bing et al. (2024-07)
Automated Force-Sensitive Reinforcement for 3DCP - Ahmed Hassan, Giwa Ilerioluwa, Game Daniel, Arce Gabriel et al. (2024-04)
Automated Reinforcement During Large-Scale Additive Manufacturing:
Structural-Assessment of a Dual Approach - Haar Bjorn, Kruger Jacques, Zijl Gideon (2024-04)
Off-Site 3D Printed Concrete Beam Design and Fabrication - Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
Concrete 3D Printing Technology in Sustainable Construction:
A Review on Raw Materials, Concrete Types and Performances - Yang Min, Li Chao, Liu Hao, Huo Longfei et al. (2024-02)
Exploring the Potential for Carrying Capacity and Reusability of 3D Printed Concrete Bridges:
Construction, Dismantlement, and Reconstruction of a Box Arch Bridge - Slavcheva Galina, Artamonova Olga, Kotova Кristina, Shvedova Mariia et al. (2023-12)
Pull-Out Behavior of Steel- and Carbon-Fibers in 3D Printable Cement Matrices of Various Compositions - Wang Xianlin, Banthia Nemkumar, Yoo Doo-Yeol (2023-11)
Reinforcement Bond Performance in 3D Concrete Printing:
Explainable Ensemble Learning Augmented by Deep Generative Adversarial Networks - Rothe Tom, Hühne Christian, Gantner Stefan, Hack Norman (2023-10)
Dynamic Winding Process of Individualized Fiber-Reinforcement Structures for Additive Manufacturing in Construction - Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-09)
Effects of 3D Concrete Printing Phases on the Mechanical Performance of Printable Strain-Hardening Cementitious Composites - Dörrie Robin, Freund Niklas, Herrmann Eric, Baghdadi Abtin et al. (2023-09)
Automated Force-Flow-Oriented Reinforcement Integration for Shotcrete 3D Printing - Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-08)
3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC):
Tailoring Fresh and Hardened State Properties - Ahmed Ghafur (2023-01)
A Review of 3D Concrete Printing:
Materials and Process Characterization, Economic Considerations and Environmental Sustainability
BibTeX
@article{hass_bos_sale.2022.CtBPoAPHRi3PC,
author = "Lauri Hass and Freek Paul Bos and Theo A. M. Salet",
title = "Characterizing the Bond Properties of Automatically Placed Helical Reinforcement in 3D Printed Concrete",
doi = "10.1016/j.conbuildmat.2022.129228",
year = "2022",
journal = "Construction and Building Materials",
volume = "355",
}
Formatted Citation
L. Hass, F. P. Bos and T. A. M. Salet, “Characterizing the Bond Properties of Automatically Placed Helical Reinforcement in 3D Printed Concrete”, Construction and Building Materials, vol. 355, 2022, doi: 10.1016/j.conbuildmat.2022.129228.
Hass, Lauri, Freek Paul Bos, and Theo A. M. Salet. “Characterizing the Bond Properties of Automatically Placed Helical Reinforcement in 3D Printed Concrete”. Construction and Building Materials 355 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129228.