The Impact of 3D Printing on Mortar Strength and Flexibility (2026-01)¶
, , ,
Journal Article - Materials, Vol. 19, Iss. 1
Abstract
With the rise in additive manufacturing in construction, particularly 3D printing using extrusion-based mortars, there is an increasing need to optimize material properties. This study compares the mechanical performance of mortar specimens produced by traditional casting and 3D printing, with a focus on flexural behavior. A high-durability mortar with very low chloride and sulfate content, which produces less CO2 than standard Portland cement, was used. This study also explores the impact of varying water-cement (w/c) ratios to obtain a valid mix for both fabrication methods. The results show that the samples obtained by traditional processes and those produced through 3D printing exhibit distinctly different behaviors under bending stresses. In the case of the molded samples, the maximum stress ranged from 1.23 to 1.78 MPa, indicating good strength and uniformity within these materials. In contrast, the 3D-printed samples showed higher values but with greater variation, ranging between 2.77 and 3.76 MPa. This variation highlights the influence of the fabrication technique in 3D printing, which may contribute to either the superiority or limitations of these samples. In terms of deformation, molded specimens exhibited brittle failure with limited post-peak energy dissipation (0.11-0.22 kN.mm), whereas 3D-printed samples displayed a mixed brittle-ductile response and enhanced energy absorption (1.70-2.82 kN.mm). These findings suggest that traditionally obtained specimens are suitable for applications requiring predictable stiffness, while 3D-printed mortars are advantageous for applications demanding greater flexibility and energy absorption.
¶
65 References
- Abdalla Hadeer, Fattah Kazi, Abdallah Mohamed, Tamimi Adil (2021-10)
Environmental Footprint and Economics of a Full-Scale 3D Printed House - Adaloudis Max, Bonnin Roca Jaime (2021-05)
Sustainability Tradeoffs in the Adoption of 3D Concrete Printing in the Construction Industry - Ahmed Ghafur (2023-01)
A Review of 3D Concrete Printing:
Materials and Process Characterization, Economic Considerations and Environmental Sustainability - Baz Bilal, Aouad Georges, Rémond Sébastien (2020-01)
Effect of the Printing Method and Mortar’s Workability on Pull-Out Strength of 3D Printed Elements - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Capêto Ana, Jesus Manuel, Uribe Braian, Guimarães Ana et al. (2024-05)
Building a Greener Future:
Advancing Concrete Production Sustainability and the Thermal Properties of 3D Printed Mortars - Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
An Experimental and Numerical Study - Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures - Dai Shuo, Zhu Huajun, Zhai Munan, Wu Qisheng et al. (2021-06)
Stability of Steel-Slag as Fine Aggregate and Its Application in 3D Printing Materials - Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
A Critical Review - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand - Du Song, Teng Fei, Zhuang Zicheng, Zhang Dong et al. (2024-03)
A BIM-Enabled Robot-Control System for Automated Integration Between Rebar-Reinforcement and 3D Concrete Printing - Fonseca Mariana, Matos Ana (2023-03)
3D Construction Printing Standing for Sustainability and Circularity:
Material-Level Opportunities - Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies - Geng Songyuan, Mei Liu, Cheng Boyuan, Luo Qilong et al. (2024-03)
Revolutionizing 3D Concrete Printing:
Leveraging Random-Forest-Model for Precise Printability and Rheological Prediction - Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-12)
Comparison of Rheology Measurement Techniques Used in 3D Concrete Printing Applications - Jia Zijian, Kong Lingyu, Jia Lutao, Ma Lei et al. (2024-04)
Printability and Mechanical Properties of 3D Printing Ultra-High-Performance Concrete Incorporating Limestone-Powder - Jiang Xiongzhi, Li Yujia, Yang Zhe, Li Yangbo et al. (2024-02)
Harnessing Path-Optimization to Enhance the Strength of Three-Dimensional Printed Concrete - Jo Jun, Jo Byung, Cho Woohyun, Kim Jung-Hoon (2020-03)
Development of a 3D Printer for Concrete Structures:
Laboratory Testing of Cementitious Materials - Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
Test-Methods for 3D Printable Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-12)
Evaluation of the Mechanical Properties of a 3D Printed Mortar - Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing - Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
A Systematical Review of 3D Printable Cementitious Materials - Lyu Fuyan, Zhao Dongliang, Hou Xiaohui, Sun Li et al. (2021-10)
Overview of the Development of 3D Printing Concrete:
A Review - Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
3D Concrete Printing:
Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups - Mazhoud Brahim, Perrot Arnaud, Picandet Vincent, Rangeard Damien et al. (2019-04)
Underwater 3D Printing of Cement-Based Mortar - Mesnil Romain, Poussard Valentin, Sab Karam, Caron Jean-François (2022-11)
On the Geometrical Origin of the Anisotropy in Extrusion-Based 3D Printed Structures - Meurer Maximilian, Claßen Martin (2021-02)
Mechanical Properties of Hardened 3D Printed Concretes and Mortars:
Development of a Consistent Experimental Characterization-Strategy - Mogra Mihir, Asaf Ofer, Sprecher Aaron, Amir Oded (2023-08)
Design-Optimization of 3D Printed Concrete Elements Considering Buildability - Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-07)
Evaluating the Influence of Aggregate Content on Pumpability of 3D Printable Concrete - Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
Durability Properties of 3D Printed Concrete - Özalp Fatih, Yılmaz Halit (2020-03)
Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications - Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
A Review - Pessoa Ana Sofia, Guimarães Ana, Lucas Sandra, Simões Nuno (2021-02)
3D Printing in the Construction Industry:
A Systematic Review of the Thermal Performance in Buildings - Puzatova (nee Sharanova) Anastasiia, Shakor Pshtiwan, Laghi Vittoria, Dmitrieva Maria (2022-11)
Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer:
A Review - Rangel Carolina, Guimarães Ana, Salet Theo, Lucas Sandra (2024-03)
3D Printing Lightweight Mortars with Cork to Improve Thermal Efficiency in Buildings - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Robayo-Salazar Rafael, Gutiérrez Ruby, Villaquirán-Caicedo Mónica, Delvasto Arjona Silvio (2022-12)
3D Printing with Cementitious Materials:
Challenges and Opportunities for the Construction Sector - Sambucci Matteo, Valente Marco (2021-06)
Influence of Waste-Tire-Rubber-Particles-Size on the Microstructural, Mechanical, and Acoustic Insulation Properties of 3D Printable Cement Mortars - Sergis Vasileios, Ouellet-Plamondon Claudiane (2022-07)
Automating Mix-Design for 3D Concrete Printing Using Optimization Methods - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
Role of Chemical Admixtures on 3D Printed Portland Cement:
Assessing Rheology and Buildability - Tamimi Adil, Alqamish Habib, Khaldoune Ahlam, Alhaidary Haidar et al. (2023-03)
Framework of 3D Concrete Printing Potential and Challenges - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Ting Guan, Tay Yi, Tan Ming (2021-04)
Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing - Tripathi Avinaya, Nair Sooraj, Neithalath Narayanan (2022-01)
A Comprehensive Analysis of Buildability of 3D Printed Concrete and the Use of Bi-Linear Stress-Strain Criterion-Based Failure Curves Towards Their Prediction - Ungureanu Dragoș, Onuțu Cătălin, Isopescu Dorina, Țăranu Nicolae et al. (2023-06)
A Novel Approach for 3D Printing Fiber-Reinforced Mortars - Wang Bolin, Zhai Mingang, Yao Xiaofei, Wu Qing et al. (2022-03)
Printable and Mechanical Performance of 3D Printed Concrete Employing Multiple Industrial Wastes - Wei Ying, Han Song, Yu Shiwei, Chen Ziwei et al. (2024-05)
Parameter Impact on 3D Concrete Printing from Single to Multi-Layer Stacking - Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Xiao Jianzhuang, Lv Zhenyuan, Duan Zhenhua, Hou Shaodan (2022-03)
Study on Preparation and Mechanical Properties of 3D Printed Concrete with Different Aggregate-Combinations - Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete - Ye Junhong, Zhang Jiangdi, Yu Jie, Yu Jiangtao et al. (2023-11)
Flexural Behaviors of 3D Printed Lightweight Engineered Cementitious Composites (ECC) Slab with Hollow Sections - Zareiyan Babak, Khoshnevis Behrokh (2017-06)
Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness - Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer - Zhang Kaijian, Lin Wenqiang, Zhang Qingtian, Wang Dehui et al. (2024-07)
Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials - Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites - Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
3D Concrete Printing of Permanent Formwork for Concrete Column Construction - Zhuang Zicheng, Xu Fengming, Ye Junhong, Hu Nan et al. (2024-06)
A Comprehensive Review of Sustainable Materials and Tool-Path-Optimization in 3D Concrete Printing
0 Citations
BibTeX
@article{gil_amir_vali_verd.2026.TIo3PoMSaF,
author = "Tomas Gil-Lopez and Alireza Amirfiroozkoohi and María Mercedes Valiente López and Maria Amparo Verdu-Vazquez",
title = "The Impact of 3D Printing on Mortar Strength and Flexibility: A Comparative Analysis of Conventional and Additive Manufacturing Techniques",
doi = "10.3390/ma19010212",
year = "2026",
journal = "Materials",
volume = "19",
number = "1",
}
Formatted Citation
T. Gil-Lopez, A. Amirfiroozkoohi, M. M. V. López and M. A. Verdu-Vazquez, “The Impact of 3D Printing on Mortar Strength and Flexibility: A Comparative Analysis of Conventional and Additive Manufacturing Techniques”, Materials, vol. 19, no. 1, 2026, doi: 10.3390/ma19010212.
Gil-Lopez, Tomas, Alireza Amirfiroozkoohi, María Mercedes Valiente López, and Maria Amparo Verdu-Vazquez. “The Impact of 3D Printing on Mortar Strength and Flexibility: A Comparative Analysis of Conventional and Additive Manufacturing Techniques”. Materials 19, no. 1 (2026). https://doi.org/10.3390/ma19010212.