Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete (2024-03)¶
, Yang Shutong, Liu Qi, Xu Mingqi, ,
Journal Article - Journal of Building Engineering, No. 108964
Abstract
To reduce resource consumption and greenhouse gas emissions, 3D printed alkali-activated slag/fly ash recycled sand (RS) concrete (3DP AARSC) was developed in this paper. The reasonable evaluation of its crack resistance is crucial to structural safety and stability since steel bars are still difficult to embed in 3DP samples automatically so far. The realistic fracture parameters can be responsible for the reasonable evaluation and are extremely difficult to predict accurately based on traditional methods unless the specimen sizes are large enough. Therefore, the purpose of this study is to determine the size-independent tensile strength (ft) and fracture toughness (KIC) through a predictive fracture model incorporating the heterogeneity and discontinuity of 3DP AARSC. First, fracture tests of small-sized specimens were conducted to clarify the fracture mechanisms of 3DP AARSC in different loading directions. Subsequently, based on the boundary effect model, the size-independent ft and KIC were explicitly correlated to the maximum fracture load (Fmax) in different loading directions and directly obtained if Fmax was measured from the tests. The results displayed that the predicted ft and KIC of 3DP AARSC loaded perpendicular to the printing direction were significantly higher than the counterparts of concrete loaded parallel to the printing direction by 108.7% at most. The greatest cracking resistance was demonstrated in the specimens with the RS replacement rate of 60% for natural river sand (NS), resulting in the maximum increase of 19.9% in ft and KIC compared with the 3DP concrete with 100% NS. The fiber addition and partial RS replacement increased the difference in the crack resistance along various loading directions. Moreover, the fiber incorporation had no significant improvement in the crack resistance of 3DP AARSC loaded parallel to the printing direction and apparently increased its ft and KIC along other loading directions.
¶
30 References
- Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
3D Printable Alkali-Activated Concretes for Building Applications:
A Critical Review - Bong Shin, Nematollahi Behzad, Nerella Venkatesh, Mechtcherine Viktor (2022-09)
Method of Formulating 3D Printable Strain-Hardening Alkali-Activated Composites for Additive Construction - Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Chang Ze, Wan Zhi, Xu Yading, Schlangen Erik et al. (2022-06)
Convolutional Neural Network for Predicting Crack-Pattern and Stress-Crack-Width Curve of Air-Void Structure in 3D Printed Concrete - Chen Yuning, Jia Lutao, Liu Chao, Zhang Zedi et al. (2022-01)
Mechanical Anisotropy Evolution of 3D Printed Alkali-Activated Materials with Different GGBFS-FA Combinations - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Gebhard Lukas, Esposito Laura, Menna Costantino, Mata-Falcón Jaime (2022-07)
Inter-Laboratory Study on the Influence of 3D Concrete Printing Set-Ups on the Bond Behavior of Various Reinforcements - Gupta Shashank, Esmaeeli Hadi, Prihar Arjun, Ghantous Rita et al. (2023-04)
Fracture- and Transport-Analysis of Heterogeneous 3D Printed Lamellar Cementitious Materials - İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Yıldırım Gürkan et al. (2022-03)
Rheological Properties and Compressive Strength of Construction and Demolition Waste-Based Geopolymer Mortars for 3D Printing - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Kondepudi Kala, Subramaniam Kolluru, Nematollahi Behzad, Bong Shin et al. (2022-05)
Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing - Liu Bing, Liu Xiaoyan, Li Guangtao, Geng Songyuan et al. (2022-09)
Study on Anisotropy of 3D Printing PVA-Fiber-Reinforced Concrete Using Destructive and Non-Destructive Testing Methods - Liu Haoran, Xiao Jianzhuang, Ding Tao (2023-03)
Flexural Performance of 3D Printed Composite Beams with ECC and Recycled Fine Aggregate Concrete:
Experimental and Numerical Analysis - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
3D Printed Steel-Reinforcement for Digital Concrete Construction:
Manufacture, Mechanical Properties and Bond Behavior - Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2021-09)
Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams - Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction - Noaimat Yazeed, Chougan Mehdi, Albar Abdulrahman, Skibicki Szymon et al. (2023-10)
Recycled Brick-Aggregates in One-Part Alkali-Activated Materials:
Impact on 3D Printing Performance and Material-Properties - Pham Luong, Panda Biranchi, Tran Jonathan (2021-11)
Fresh and Hardened Properties of 3D Printable Polymer-Fiber-Reinforced High-Performance Cementitious Composite - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
Mechanical Properties and Durability - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Wu Yun-Chen, Li Mo (2022-09)
Effects of Early-Age Rheology and Printing Time Interval on Late-Age Fracture Characteristics of 3D Printed Concrete - Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
A Cleaner Perspective on 3D Printing - Yang Shutong, Lan Tian, Sun Zhongke, Xu Mingqi et al. (2022-03)
A Predictive Model to Determine Tensile Strength and Fracture-Toughness of 3D Printed Fiber-Reinforced Concrete Loaded in Different Directions - Zbyszyński Wojciech, Pietras Daniel, Sadowski Tomasz (2023-04)
Data-Image-Correlation-Analysis of the Destruction-Process of 3D Printable Layered Beams Subjected to the Three-Point Bending Process - Zhang Hanghua, Xiao Jianzhuang (2021-08)
Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand - Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
8 Citations
- Sbardelotto Eduardo, Vieira Manuel, Ferreira dos Santos Karyne, Pereira dos Santos Samuel et al. (2025-06)
Exploratory Study on the Rheological Behaviour of 3D Printable Mortars Incorporating Fine Recycled Concrete Aggregates (FRCA) - Mukhtar Faisal (2025-05)
3D-Printed Concrete Fracture:
Effects of Cohesive Laws, Mixes, and Print Parameters in 3D EXtended FEM - Jaji Mustapha, Babafemi Adewumi, Zijl Gideon (2025-05)
Mechanical Performance of Extrusion-Based Two-Part 3D-Printed Geopolymer Concrete:
A Review of Advances in Laboratory and Real-Scale Construction Projects - Yang Shutong, Chen Zhengyuan, Lan Tian, Yang Tiange (2025-05)
Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions - Chen Wenguang, Liang Long, Zhou Boyang, Ye Junhong et al. (2025-02)
A Fracture Mechanics Model for Predicting Tensile Strength and Fracture Toughness of 3D Printed Engineered Cementitious Composites - Wang Hailong, Shen Wenbin, Sun Xiaoyan, Song Xinlei et al. (2025-01)
Influences of Particle-Size on the Performance of 3D Printed Coarse Aggregate Concrete:
Experiment, Microstructure, and Mechanism Analysis - Takva Çağatay, Top Semahat, Gökgöz Berru, Gebel Şeyma et al. (2024-11)
Applicability of 3D Concrete Printing Technology in Building Construction with Different Architectural Design Decisions in Housing - Lan Tian, Yang Shutong, Xu Mingqi, Chen Zhengyuan et al. (2024-10)
Quantitative Assessment of Interfacial-Fracture-Properties in 3D Printed Alkali-Activated Recycled Sand Concrete Based on a Closed-Form Fracture-Model
BibTeX
@article{chen_yang_liu_xu.2024.CFFMfECRo3PFRAASFARSC,
author = "Zhengyuan Chen and Shutong Yang and Qi Liu and Mingqi Xu and Sheng Wang and Tian Lan",
title = "Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete",
doi = "10.1016/j.jobe.2024.108964",
year = "2024",
journal = "Journal of Building Engineering",
pages = "108964",
}
Formatted Citation
Z. Chen, S. Yang, Q. Liu, M. Xu, S. Wang and T. Lan, “Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete”, Journal of Building Engineering, p. 108964, 2024, doi: 10.1016/j.jobe.2024.108964.
Chen, Zhengyuan, Shutong Yang, Qi Liu, Mingqi Xu, Sheng Wang, and Tian Lan. “Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete”. Journal of Building Engineering, 2024, 108964. https://doi.org/10.1016/j.jobe.2024.108964.