Skip to content

A Predictive Model to Determine Tensile Strength and Fracture-Toughness of 3D Printed Fiber-Reinforced Concrete Loaded in Different Directions (2022-03)

10.1016/j.tafmec.2022.103309

Yang Shutong,  Lan Tian,  Sun Zhongke, Xu Mingqi, Wang Mingxin, Feng Yaodong
Journal Article - Theoretical and Applied Fracture Mechanics, Vol. 119

Abstract

Concrete 3D printing is getting increased attention in civil engineering. Fibers are generally added to reinforce printed concrete. Crack resistance of 3D printed fiber reinforced concrete in different directions need to be evaluated in a rational manner due to its anisotropic behavior. Therefore, fracture test was performed on printed and mold-cast concrete first in this paper, and failure mechanism were then examined. An analytical model was subsequently proposed based on the analysis of test results to predict the realistic tensile strength ft, fracture toughness KIC and fracture energy GF in different loading directions by incorporating material heterogeneity and discontinuity. The physical meaning of microstructure characteristic parameter reflecting the material heterogeneity was clarified according to the degree of fiber toughness. Closed-form solutions of ft, KIC and GF were obtained related to the maximum fracture load Fmax. The influence of loading direction on the predicted fracture parameters was analyzed and discussed. Results show that the ft, KIC and GF from specimens loaded perpendicularly to the printing direction were significantly larger than those parallel to the printing direction. Besides, the formers were also higher than the parameters from mold-cast specimens due to the fiber preferential alignment along the printing direction in printed concrete.

30 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  4. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  5. Casagrande Lorenzo, Esposito Laura, Menna Costantino, Asprone Domenico et al. (2020-02)
    Effect of Testing Procedures on Buildability Properties of 3D Printable Concrete
  6. Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
    Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
    Printability and Direction-Dependent Mechanical Performance
  7. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  8. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  9. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  10. Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
    Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete
  11. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  12. Khoshnevis Behrokh, Yuan Xiao, Zahiri Behnam, Zhang Jing et al. (2016-08)
    Construction by Contour Crafting Using Sulfur-Concrete with Planetary Applications
  13. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  14. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  15. Lu Bing, Li Mingyang, Wong Teck, Qian Shunzhi (2021-02)
    Effect of Printing Parameters on Material-Distribution in Spray-Based 3D Concrete Printing (S-3DCP)
  16. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  17. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  18. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  19. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  20. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  21. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  22. Sun Junbo, Aslani Farhad, Lu Jenny, Wang Lining et al. (2021-06)
    Fiber-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing
  23. Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
    Time-Gap-Effect on Bond Strength of 3D Printed Concrete
  24. Xiao Jianzhuang, Chen Zixuan, Ding Tao, Zou Shuai (2021-10)
    Bending Behavior of Steel-Cable-Reinforced 3D Printed Concrete in the Direction Perpendicular to the Interfaces
  25. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  26. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  27. Zareiyan Babak, Khoshnevis Behrokh (2017-06)
    Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
    Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness
  28. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  29. Zhang Jing, Khoshnevis Behrokh (2012-09)
    Optimal Machine Operation Planning for Construction by Contour Crafting
  30. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

24 Citations

  1. Cao Jing, Yang Xiaojie, Shi Yaming, Yang Yi et al. (2025-12)
    Numerical Analysis of Mechanical Properties of Steel Fiber Composite Cement Mortar Considering Non-Uniformity in 3D Printing.
  2. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  3. Zhou Juanlan, Shi Xiangwen, Zheng Hongrun, Jin Ruoyu et al. (2025-09)
    Investigating the Effects of Hybrid PVA/BF Fibers in Low-Carbon 3D Printed Concrete with Recycled Aggregates:
    Rheology, Strength, and Anisotropy
  4. Ingle Vaibhav, Prem Prabhat (2025-07)
    Acoustic Emission Examination of 3D Printed Ultra-High Performance Concrete with and Without Coarse Aggregate Under Fresh and Hardened States
  5. Duan Yuhang, Wang Chuan, Yin Binbin, Liew Kim (2025-06)
    Modeling Interfacial Failure in 3D-Printed Concrete via Peridynamics
  6. Tao Yaxin, Zhang Yi, Mohan Manu, Dai Xiaodi et al. (2025-05)
    Waste-Derived Aggregates in 3D Printable Concrete:
    Current Insights and Future Perspectives
  7. Mukhtar Faisal (2025-05)
    3D-Printed Concrete Fracture:
    Effects of Cohesive Laws, Mixes, and Print Parameters in 3D EXtended FEM
  8. Yang Shutong, Chen Zhengyuan, Lan Tian, Yang Tiange (2025-05)
    Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions
  9. Rasel Risul, Hossain Md, Zubayer Md, Zhang Chaoqun (2024-11)
    Exploring the Fresh and Rheology Properties of 3D Printed Concrete with Fiber-Reinforced Composites:
    A Novel Approach Using Machine Learning Techniques
  10. Lan Tian, Yang Shutong, Xu Mingqi, Chen Zhengyuan et al. (2024-10)
    Quantitative Assessment of Interfacial-Fracture-Properties in 3D Printed Alkali-Activated Recycled Sand Concrete Based on a Closed-Form Fracture-Model
  11. Subramaniam Kolluru, Paritala Spandana, Kulkarni Omkar, Thakur Manideep (2024-09)
    Fracture in 3D Printed Concrete Beams:
    Deflection and Penetration of Impinging Cracks at Layer Interfaces
  12. Bier Henriette, Hidding Arwin, Lewandowska J., Calabrese Giuseppe (2024-09)
    Developing a Computer-Vision Application for Crack Detection
  13. Liu Bing, Chen Yuwen, Li Dongdong, Wang Yang et al. (2024-09)
    Study on the Fracture Behavior and Anisotropy of 3D Printing PVA-Fiber-Reinforced Concrete
  14. Nguyen Vuong, Tran Jonathan, San Ha Ngoc, Xie Yi et al. (2024-08)
    Blast-Resistance of 3D Printed Bouligand Concrete Panels Reinforced with Steel-Fibers:
    Numerical Investigations
  15. Du Guoqiang, Qian Ye (2024-05)
    Effects of Printing-Patterns and Loading-Directions on Fracture Behavior of 3D Printed Strain-Hardening Cementitious Composites
  16. Chen Zhengyuan, Yang Shutong, Liu Qi, Xu Mingqi et al. (2024-03)
    Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete
  17. Nguyen Vuong, Tran Jonathan, Liu Junli, Tran Mien et al. (2024-02)
    Extended Finite Element Multi-Scale Modelling for Crack Propagation in 3D Printed Fiber-Reinforced Concrete
  18. Tang Yuxiang, Xiao Jianzhuang, Ding Tao, Liu Haoran et al. (2024-01)
    Trans-Layer and Inter-Layer Fracture Behavior of Extrusion-Based 3D Printed Concrete Under Three-Point Bending
  19. Warsi Syed, Panda Biranchi, Biswas Pankaj (2023-12)
    Exploring Fiber Addition Methods and Mechanical Properties of Fiber-Reinforced 3D Printed Concrete:
    A Review
  20. Wang Hao, Jiang Minghui, Hang Meiyan, Zhou Gangming et al. (2023-07)
    Research on the Mechanical Properties and Frost-Resistance of Aeolian Sand 3D Printed Mortar
  21. Oh Sangwoo, Hong Geuntae, Choi Seongcheol (2023-05)
    Determining the Effect of Superabsorbent Polymers, Macrofibers, and Resting Time on the Rheological Properties of Cement Mortar Using Analysis of Variance:
    A 3D Printing Perspective
  22. Zbyszyński Wojciech, Pietras Daniel, Sadowski Tomasz (2023-04)
    Data-Image-Correlation-Analysis of the Destruction-Process of 3D Printable Layered Beams Subjected to the Three-Point Bending Process
  23. Giridhar Greeshma, Prem Prabhat, Kumar Shankar (2023-01)
    Development of Concrete Mixes for 3D Printing Using Simple Tools and Techniques
  24. Nguyen Vuong, Liu Junli, Li Shuai, Zhang Guomin et al. (2022-10)
    Modelling of 3D Printed Bio-Inspired Bouligand Cementitious Structures Reinforced with Steel-Fibers

BibTeX
@article{yang_lan_sun_xu.2022.APMtDTSaFTo3PFRCLiDD,
  author            = "Shutong Yang and Tian Lan and Zhongke Sun and Mingqi Xu and Mingxin Wang and Yaodong Feng",
  title             = "A Predictive Model to Determine Tensile Strength and Fracture-Toughness of 3D Printed Fiber-Reinforced Concrete Loaded in Different Directions",
  doi               = "10.1016/j.tafmec.2022.103309",
  year              = "2022",
  journal           = "Theoretical and Applied Fracture Mechanics",
  volume            = "119",
}
Formatted Citation

S. Yang, T. Lan, Z. Sun, M. Xu, M. Wang and Y. Feng, “A Predictive Model to Determine Tensile Strength and Fracture-Toughness of 3D Printed Fiber-Reinforced Concrete Loaded in Different Directions”, Theoretical and Applied Fracture Mechanics, vol. 119, 2022, doi: 10.1016/j.tafmec.2022.103309.

Yang, Shutong, Tian Lan, Zhongke Sun, Mingqi Xu, Mingxin Wang, and Yaodong Feng. “A Predictive Model to Determine Tensile Strength and Fracture-Toughness of 3D Printed Fiber-Reinforced Concrete Loaded in Different Directions”. Theoretical and Applied Fracture Mechanics 119 (2022). https://doi.org/10.1016/j.tafmec.2022.103309.