Skip to content

Properties and Microstructure of Extrusion-Based 3D Printing Mortar Containing a Highly Flowable, Rapid Set Grout (2021-09)

10.1016/j.cemconcomp.2021.104243

 Wi Kwangwoo,  Wang Kejin, Taylor Peter,  Laflamme Simon,  Sritharan Sri,  Qin Hantang
Journal Article - Cement and Concrete Composites, Vol. 124

Abstract

In this study, a highly flowable, rapid set crack repair grout powder (CRG) was used to facilitate mix design of 3D printing mortar. Various mortar mixtures with different amounts of CRG were evaluated for setting time, flowability, and printability. For the first time, pore/micro-structures of printed filaments and their bonds were examined in detail. The results have provided a better understanding of the anisotropic mechanical behavior of printed mortar. Plausible explanations have been made for the observations that printed samples displayed lower compressive but higher flexural strength than cast samples. It is demonstrated that CRG can be simply used as a raw material component to expedite the 3D printing concrete mix design process since finding the balance among various admixtures (e.g., water-reducing agent, thixotropic agent, accelerator, etc.) is not required.

34 References

  1. Agustí-Juan Isolda, Habert Guillaume (2016-11)
    Environmental Design Guidelines for Digital Fabrication
  2. Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
    Potential Benefits of Digital Fabrication for Complex Structures:
    Environmental Assessment of a Robotically Fabricated Concrete Wall
  3. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  4. Bentz Dale, Jones Scott, Bentz Isaiah, Peltz Max (2018-06)
    Towards the Formulation of Robust and Sustainable Cementitious Binders for 3D Additive Construction by Extrusion
  5. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  6. Ding Zhu, Wang Xiaodong, Sanjayan Jay, Zou Patrick et al. (2018-11)
    A Feasibility Study on HPMC-Improved Sulphoaluminate Cement for 3D Printing
  7. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  8. Furet Benoît, Poullain Philippe, Garnier Sébastien (2019-04)
    3D Printing for Construction Based on a Complex Wall of Polymer-Foam and Concrete
  9. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  10. Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
    Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars
  11. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  12. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  13. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  14. Lao Wenxin, Li Mingyang, Wong Teck, Tan Ming et al. (2020-02)
    Improving Surface-Finish-Quality in Extrusion-Based 3D Concrete Printing Using Machine-Learning-Based Extrudate-Geometry-Control
  15. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  16. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  17. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  18. Ma Guowei, Zhang Junfei, Wang Li, Li Zhijian et al. (2018-06)
    Mechanical Characterization of 3D Printed Anisotropic Cementitious Material by the Electromechanical Transducer
  19. Manikandan Karthick, Wi Kwangwoo, Zhang Xiao, Wang Kejin et al. (2020-03)
    Characterizing Cement Mixtures for Concrete 3D Printing
  20. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  21. Mendoza Reales Oscar, Duda Pedro, Silva Emílio, Paiva Maria et al. (2019-06)
    Nanosilica-Particles as Structural Buildup Agents for 3D Printing with Portland Cement-Pastes
  22. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  23. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  24. Perrot Arnaud, Rangeard Damien, Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Extrusion of Cement-Based Materials:
    An Overview
  25. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  26. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  27. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  28. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  29. Wi Kwangwoo, Suresh Vignesh, Wang Kejin, Li Beiwen et al. (2019-12)
    Quantifying Quality of 3D Printed Clay Objects Using a 3D Structured Light Scanning System
  30. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  31. Zareiyan Babak, Khoshnevis Behrokh (2017-06)
    Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
    Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness
  32. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  33. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  34. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

28 Citations

  1. Xue Jia-Chen, Wang Wei-Chien, Lee Ming-Gin, Huang Chia-Yun et al. (2025-12)
    Effect of Aggregate-to-Binder Ratio on 3D Printed Concrete:
    Printability, Mechanics, and Shrinkage
  2. Rahman S., Khair Sanjida, Shaikh Faiz, Sarker Prabir (2025-09)
    Decarbonized 3D Printed Concrete Incorporating Lithium Slag and PVA Fiber:
    Buildability, Mechanical, and Microstructural Insights
  3. Murtaza Ghulam, Baldinelli Giorgio (2025-08)
    Revolutionizing Architecture:
    3D Printing in Large Construction Industry and Strategic Innovations for Enhanced Performance
  4. Kaur Zinnia, Goyal Shweta, Kwatra Naveen, Bera Tarun (2025-07)
    Pore Structure Analysis and Durability Performance of Sustainable 3D Printed Concrete Incorporating Fly Ash and Limestone Calcined Clay Based Binders
  5. Ding Tao, Qu Changwei, Guo Dingming (2025-06)
    Thermal and Mechanical Properties of 3D Printed Functionally Graded Concrete:
    Utilizing Fibers and Recycled Aggregates as Gradient Components
  6. Zhang Ruo-Chen, Li Jiaxing, Liu Yiran, Huang Yimiao et al. (2025-06)
    Self-Healing Approach for Micro-Defects in 3D Printed Concrete:
    Microbial Community
  7. Safal K., Liu Han, Lopes Sousa Israel, Laflamme Simon et al. (2025-05)
    Investigation of 3D Printed Concrete for Real-Time Monitoring of Additive Manufacturing Process
  8. Das B., Prathap Y., Sandeep Ankit, Vaghamshi Keval et al. (2025-05)
    Reviewing the Materials Selection, Rheology, Durability, and Microstructural Characteristics of 3D Printed Concrete
  9. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  10. Liu Han, Laflamme Simon, Cai Bin, Lyu Ping et al. (2024-11)
    Investigation of 3D Printed Self-Sensing UHPC Composites Using Graphite and Hybrid Carbon Microfibers
  11. Lori Ali, Mehrali Mehdi (2024-11)
    Mechanical Properties and Crack-Deflection Mechanisms in 3D Printed Porous Geopolymers with Cellular Structures
  12. Sousa Israel, Alessandro Antonella, Mesquita Esequiel, Laflamme Simon et al. (2024-11)
    Comprehensive Review of 3D Printed Cementitious Composites with Carbon Inclusions:
    Current Status and Perspective for Self-Sensing Capabilities
  13. Lin Yini, Yan Jiachuan, Sun Ming, Han Xiaoyu et al. (2024-10)
    Inter-Layer Cohesion in 3D Printed Concrete:
    The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure
  14. Han Kang, Gu Fei, Yang Huashan, Tian Xinchen et al. (2024-09)
    PVA-Fiber-Reinforced Red Mud-Based Geopolymer for 3D Printing:
    Printability, Mechanical Properties and Microanalysis
  15. Mani Aravindhraj, Sekar Muthu (2024-08)
    Non-Destructive Testing Techniques for Investigating Mechanical Property and Porosity-Disparities in Extrusion 3D Printed Concrete
  16. Aghaee Kamran, Li Linfei, Roshan Alireza, Namakiaraghi Parsa (2024-08)
    Additive Manufacturing Evolution in Construction:
    From Individual Terrestrial to Collective, Aerial, and Extraterrestrial Applications
  17. Chen Anguo, Dai Pengfei, Lyu Qifeng (2024-05)
    Effect of Alkalized Straw-Fibers on the Properties of Three Dimensional Printed Cementitious Composite
  18. Abbaoui Khalid, Korachi Issam, Jai Mostapha, Šeta Berin et al. (2024-04)
    3D Concrete Printing Using Computational Fluid Dynamics:
    Modeling of Material-Extrusion with Slip-Boundaries
  19. Li Huanbao, Li Zihan, Skibniewski Mirosław, Wang Liang et al. (2023-11)
    Molding-Quality-Control with Non-Linear Forming-Method in 3D Cement Printing
  20. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  21. Geng Songyuan, Luo Qiling, Liu Kun, Li Yunchao et al. (2023-02)
    Research Status and Prospect of Machine Learning in Construction 3D Printing
  22. Che Yujun, Yang Huashan (2022-10)
    Hydration Products, Pore-Structure, and Compressive Strength of Extrusion-Based 3D Printed Cement-Pastes Containing Nano-Calcium-Carbonate
  23. Wang Li, Xiao Wei, Wang Qiao, Jiang Hailong et al. (2022-07)
    Freeze-Thaw-Resistance of 3D Printed Composites with Desert Sand
  24. Liu Xiongfei, Li Qi, Wang Fang, Ma Guowei (2022-07)
    Systematic Approach for Printability Evaluation and Mechanical Property Optimization of Spray-Based 3D Printed Mortar
  25. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  26. Ramakrishnan Sayanthan, Kanagasuntharam Sasitharan, Sanjayan Jay (2022-05)
    In-Line Activation of Cementitious Materials for 3D Concrete Printing
  27. Klyuev Sergey, Klyuev Alexander, Fediuk Roman, Ageeva Marina et al. (2022-04)
    Fresh and Mechanical Properties of Low-Cement Mortars for 3D Printing
  28. Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
    Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure

BibTeX
@article{wi_wang_tayl_lafl.2021.PaMoEB3PMCaHFRSG,
  author            = "Kwangwoo Wi and Kejin Wang and Peter C. Taylor and Simon Laflamme and Sri Sritharan and Hantang Qin",
  title             = "Properties and Microstructure of Extrusion-Based 3D Printing Mortar Containing a Highly Flowable, Rapid Set Grout",
  doi               = "10.1016/j.cemconcomp.2021.104243",
  year              = "2021",
  journal           = "Cement and Concrete Composites",
  volume            = "124",
}
Formatted Citation

K. Wi, K. Wang, P. C. Taylor, S. Laflamme, S. Sritharan and H. Qin, “Properties and Microstructure of Extrusion-Based 3D Printing Mortar Containing a Highly Flowable, Rapid Set Grout”, Cement and Concrete Composites, vol. 124, 2021, doi: 10.1016/j.cemconcomp.2021.104243.

Wi, Kwangwoo, Kejin Wang, Peter C. Taylor, Simon Laflamme, Sri Sritharan, and Hantang Qin. “Properties and Microstructure of Extrusion-Based 3D Printing Mortar Containing a Highly Flowable, Rapid Set Grout”. Cement and Concrete Composites 124 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104243.