Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete (2024-03)¶
, , , Li Xuesen, Meng Lingqi, ,
Journal Article - Journal of Building Engineering, No. 109079
Abstract
This study explores the printability of 3D geopolymer concrete using a novel extrusion device. Geopolymer, known for its eco-friendliness and rapid curing, offers an eco-friendly alternative to conventional cement in 3D printing. A novel extrusion device, integrating mixing and stirring functions, was developed to blend sodium silicate powder and precursor slurry effectively. Systematic experiments on mixing ratio, time, and speed revealed optimal conditions for geopolymer concrete printability. The precursor slurry remained pumpable for 90 min and displayed rapid reactivity in the new device. The extruded geopolymer concrete exhibited exceptional buildability, reaching a remarkable yield strength growth rate of 931.69 Pa/s. Actual printing tests resulted in a 154-layer hollow cylinder, 1840 mm tall, printed in just 26.87 min. Increasing mixing time enhanced compressive strength and reduced porosity, showcasing the potential of this set-on-demand approach and the novel extrusion device in 3D printable geopolymer concrete applications.
¶
39 References
- Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Khayat Kamal et al. (2021-10)
Digital Fabrication of Eco-Friendly Ultra-High-Performance Fiber-Reinforced Concrete - Gomaa Mohamed, Jabi Wassim, Veliz-Reyes Alejandro, Soebarto Veronica (2021-01)
3D Printing System for Earth-Based Construction:
Case Study of Cob - Guo Xiaolu, Yang Junyi, Xiong Guiyan (2020-09)
Influence of Supplementary Cementitious Materials on Rheological Properties of 3D Printed Fly-Ash-Based Geopolymer - Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing - Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars - Ma Lei, Zhang Qing, Lombois-Burger Hélène, Jia Zijian et al. (2022-09)
Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage - Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
Hydration- and Rheology-Control of Concrete for Digital Fabrication:
Potential Admixtures and Cement-Chemistry - Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content - Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2021-06)
Technologies for Improving Buildability in 3D Concrete Printing - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2022-10)
In-Line Activation of Geopolymer-Slurry for Concrete 3D Printing - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2022-02)
Set-on-Demand Geopolymer Using Print-Head Mixing for 3D Concrete Printing - Nair Sooraj, Panda Subhashree, Tripathi Avinaya, Neithalath Narayanan (2021-06)
Relating Print-Velocity and Extrusion-Characteristics of 3D Printable Cementitious Binders:
Implications Towards Testing Methods - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
A Review - Pott Ursula, Stephan Dietmar (2021-04)
Penetration-Test as a Fast Method to Determine Yield-Stress and Structural Build-Up for 3D Printing of Cementitious Materials - Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
3D Printed Geopolymer Composites:
A Review - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Ramakrishnan Sayanthan, Kanagasuntharam Sasitharan, Sanjayan Jay (2022-05)
In-Line Activation of Cementitious Materials for 3D Concrete Printing - Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
Setting-on-Demand for Digital Concrete:
Principles, Measurements, Chemistry, Validation - Roussel Nicolas, Bessaies-Bey Hela, Kawashima Shiho, Marchon Delphine et al. (2019-08)
Recent Advances on Yield-Stress and Elasticity of Fresh Cement-Based Materials - Secrieru Egor, Fataei Shirin, Schröfl Christof, Mechtcherine Viktor (2017-04)
Study on Concrete Pumpability Combining Different Laboratory Tools and Linkage to Rheology - Tao Yaxin, Rahul Attupurathu, Lesage Karel, Tittelboom Kim et al. (2021-11)
Mechanical and Microstructural Properties of 3D Printable Concrete in the Context of the Twin-Pipe Pumping-Strategy - Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
Possibilities and Challenges - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Tran Mien, Cu Yen, Le Chau (2021-10)
Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing - Tripathi Avinaya, Nair Sooraj, Neithalath Narayanan (2022-01)
A Comprehensive Analysis of Buildability of 3D Printed Concrete and the Use of Bi-Linear Stress-Strain Criterion-Based Failure Curves Towards Their Prediction - Vallurupalli Kavya, Farzadnia Nima, Khayat Kamal (2021-01)
Effect of Flow Behavior and Process-Induced Variations on Shape Stability of 3D Printed Elements:
A Review - Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Yu Qian, Zhu Binrong, Li Xuesen, Meng Lingqi et al. (2023-04)
Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag - Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer - Zhang Nan, Xia Ming, Sanjayan Jay (2021-10)
Short-Duration Near-Nozzle Mixing for 3D Concrete Printing - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
3 Citations
- Xiahou Xiaer, Ding Xingyuan, Yu Ke-Ke, Lu Cong (2025-08)
From Waste to Strength:
Sustainable Valorization of Modified Recycled PET Fibers for Rheological Control and Performance Enhancement in 3D Printed Concrete - Wang Jiakang, Anwar Muhammad, Zhu Xingyi, Zhang Yating et al. (2025-07)
Robust Optimization of Formulation Ratios for the Mechanical, Microstructural and Printing Performance of Cost-Effective 3D Printing Geopolymer - Tanyildizi Harun, Seloglu Maksut, Coskun Ahmet (2024-08)
The Effect of Nano-Zinc-Oxide on Freeze-Thaw-Resistance of 3D Printed Geopolymer Mortars
BibTeX
@article{shen_zhu_cai_li.2024.DoaNEDtItPo3PGC,
author = "Zhaoliang Sheng and Binrong Zhu and Jingming Cai and Xuesen Li and Lingqi Meng and Yamei Zhang and Jinlong Pan",
title = "Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete",
doi = "10.1016/j.jobe.2024.109079",
year = "2024",
journal = "Journal of Building Engineering",
pages = "109079",
}
Formatted Citation
Z. Sheng, “Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete”, Journal of Building Engineering, p. 109079, 2024, doi: 10.1016/j.jobe.2024.109079.
Sheng, Zhaoliang, Binrong Zhu, Jingming Cai, Xuesen Li, Lingqi Meng, Yamei Zhang, and Jinlong Pan. “Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete”. Journal of Building Engineering, 2024, 109079. https://doi.org/10.1016/j.jobe.2024.109079.