Utilization of Powders and Fine Aggregates from the Recycling of Construction and Demolition Waste in the 3D Printing of Portland-Based Cementitious Materials (2024-02)¶
, , ,
Journal Article - Cleaner Materials, No. 100234
Abstract
This paper analysed the possibility of using recycled powders (<75 µm) and recycling fine aggregates (<1.18 mm) obtained during the crushing and grinding of concrete waste (CoW), ceramic waste (CeW) and red clay brick waste (RCBW) when designing cementitious pastes and mortars for 3D printing. The effects of the type of powder (CoW-powder, CeW-powder and RCBW-powder) and of the liquid/solid (L/S) ratio on the mixture properties in the fresh and hardened states were studied. In the fresh state, the level of flowability (mini-slump), flow index (flow table), buildability and setting time characteristics of the cementitious pastes were evaluated. In addition, the rheological behaviour was analysed through a rotational rheometer. In the hardened state, the compressive strength was determined at 3, 7, 28 and 90 days. The effects of the type of recycled fine aggregate (RFA − CoW, RFA − CeW and RFA − RCBW) were evaluated for mortars with a cement:aggregate ratio of 1:0.5. Based on the results obtained, the most suitable mixtures were selected to carry out 3D printing tests on a laboratory scale. From the 3D printing of beam-type specimens, it was possible to determine the flexural and compressive strengths (28 days) of the selected mixtures. The results obtained validated the possibility of using recycled powders (CoW, CeW and RCBW) to replace 30 % of ordinary Portland cement (OPC) and to incorporate 100 % recycled fine aggregates in the design of cementitious materials (pastes and mortars) for 3D printing. In this regard, the recycled powders and recycled fine aggregates increase the buildability and thixotropy of cementitious mixtures. With an adjustment in the L/S (liquid/solids) ratio, their application in 3D printing becomes feasible. This alternative for the use of powders and fine aggregates from construction and demolition waste (CDW) could be considered a contribution towards the sustainability of the sector and the implementation of a circular economy.
¶
27 References
- Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers - Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
Sustainable Materials for 3D Concrete Printing - Che Yujun, Yang Huashan (2022-10)
Hydration Products, Pore-Structure, and Compressive Strength of Extrusion-Based 3D Printed Cement-Pastes Containing Nano-Calcium-Carbonate - Christen Heidi, Cho Seung, Zijl Gideon, Villiers Wibke (2022-11)
Phase-Change-Material-Infused Recycled Brick-Aggregate in 3D Printed Concrete - Christen Heidi, Zijl Gideon, Villiers Wibke (2022-05)
The Incorporation of Recycled Brick-Aggregate in 3D Printed Concrete - Demiral Nazim, Ozkan Ekinci Mehmet, Şahin Oğuzhan, İlcan Hüseyin et al. (2022-10)
Mechanical Anisotropy Evaluation and Bonding Properties of 3D Printable Construction and Demolition Waste-Based Geopolymer Mortars - Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
A Review - Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand - Hamidi Fatemeh, Aslani Farhad (2019-05)
Additive Manufacturing of Cementitious Composites:
Materials, Methods, Potentials, and Challenge - Hao Lucen, Xiao Jianzhuang, Sun Jingting, Xia Bing et al. (2022-06)
Thermal Conductivity of 3D Printed Concrete With Recycled Fine Aggregate Composite Phase-Change-Materials - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
Rheometry for Concrete 3D Printing:
A Review and an Experimental Comparison - Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
Test-Methods for 3D Printable Concrete - Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
3D Printing of Concrete:
Beyond Horizons - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lee Keon-Woo, Lee Hojae, Choi Myoungsung (2022-07)
Correlation Between Thixotropic Behavior and Buildability for 3D Concrete Printing - Liu Haoran, Xiao Jianzhuang, Ding Tao (2023-03)
Flexural Performance of 3D Printed Composite Beams with ECC and Recycled Fine Aggregate Concrete:
Experimental and Numerical Analysis - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Robayo-Salazar Rafael, Gutiérrez Ruby, Villaquirán-Caicedo Mónica, Delvasto Arjona Silvio (2022-12)
3D Printing with Cementitious Materials:
Challenges and Opportunities for the Construction Sector - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
Role of Chemical Admixtures on 3D Printed Portland Cement:
Assessing Rheology and Buildability - Sun Bochao, Zeng Qiang, Wang Dianchao, Zhao Weijian (2022-10)
Sustainable 3D Printed Mortar with CO2 Pretreated Recycled Fine Aggregates - Vlieger Jentel, Boehme Luc, Blaakmeer Jan, Li Jiabin (2023-01)
Buildability-Assessment of Mortar with Fine Recycled Aggregates for 3D Printing - Wu Yiwen, Liu Chao, Bai Guoliang, Liu Huawei et al. (2023-03)
3D Printed Concrete with Recycled Sand:
Pore-Structure and Triaxial Compression Properties - Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates - Zhang Hanghua, Xiao Jianzhuang (2021-08)
Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand - Zhang Hanghua, Xiao Jianzhuang, Duan Zhenhua, Zou Shuai et al. (2022-06)
Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar - Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing
12 Citations
- Öztürk Ece, Ince Ceren, Borgianni Yuri, Nicolaides Demetris et al. (2025-12)
Printability, Engineering Properties and Environmental Implications of 3D-Printed Cementitious Mortars Incorporating Hydrated Lime, Tile Powder and Accelerator - Sikora Paweł, Federowicz Karol, Skibicki Szymon, Techman Mateusz et al. (2025-11)
Demonstration of 3D-Printed Concrete Containing Fine Recycled Concrete Aggregates and Recycled Concrete Powder:
Rheology, Early-Age, Shrinkage, Mechanical, and Durability Performance. - Maroszek Marcin, Rudziewicz Magdalena, Shah Syed, Tran Doan et al. (2025-11)
Development of Eco-Friendly Construction Materials for 3D Printing Using Fly Ash and Demolition Waste - Maroszek Marcin, Rudziewicz Magdalena, Rusin-Żurek Karina, Hager Izabela et al. (2025-09)
Recycled Materials and Lightweight Insulating Additions to Mixtures for 3D Concrete Printing - Raza Muhammad, Kravchenko Ekaterina, Besklubova Svetlana, Lazorenko Georgy et al. (2025-07)
3D Printing of Recycled Materials for Sustainable Construction:
A Comprehensive Economic and Life Cycle Assessment - Gomez Jaramillo Laura, Luković Mladena, Šavija Branko, Zhou Wen (2025-06)
Recycled Sand for 3D-Printed Strain Hardening Cementitious Composite:
A Review of Recent Developments - Araújo Rísia, Martinelli Antônio, Cabral Kleber, Nunes Ueslei et al. (2025-03)
Effect of Lightweight Expanded Clay Aggregate (LECA) On the Printability of Cementitious Compositions for 3D Printing - Tinoco Matheus, Cavalcante Tiago, Andrade Luiza, Araújo Olga et al. (2025-01)
Mix-Design-Strategies for 3D Printable Bio-Based Cementitious Composites Using Rice-Husk-Particles as Multifunctional Aggregates - Venugopal Reddy P., Nakkeeran G., Roy Dipankar, Alaneme George (2024-11)
Evaluating the Use of Recycled Fine Aggregates in 3D Printing:
A Systematic Review - Murali Gunasekaran, Leong Sing (2024-11)
Waste-Driven Construction:
A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development - Federowicz Karol, Cendrowski Krzysztof, Sikora Paweł (2024-10)
Low-Carbon Cementitious Composite Incorporated with Biochar and Recycled Fines Suitable for 3D Printing Applications:
Hydration, Shrinkage and Early-Age Performance - Zhao Hongyu, Wang Yufei, Liu Xianda, Wang Xiangyu et al. (2024-08)
Review on Solid Wastes Incorporated Cementitious Material Using 3D Concrete Printing-Technology
BibTeX
@article{roba_varg_mart_guti.2024.UoPaFAftRoCaDWit3PoPBCM,
author = "Rafael Robayo-Salazar and Armando Vargas and Fabio Martínez and Ruby Mejía de Gutiérrez",
title = "Utilization of Powders and Fine Aggregates from the Recycling of Construction and Demolition Waste in the 3D Printing of Portland-Based Cementitious Materials",
doi = "10.1016/j.clema.2024.100234",
year = "2024",
journal = "Cleaner Materials",
pages = "100234",
}
Formatted Citation
R. Robayo-Salazar, A. Vargas, F. Martínez and R. M. de Gutiérrez, “Utilization of Powders and Fine Aggregates from the Recycling of Construction and Demolition Waste in the 3D Printing of Portland-Based Cementitious Materials”, Cleaner Materials, p. 100234, 2024, doi: 10.1016/j.clema.2024.100234.
Robayo-Salazar, Rafael, Armando Vargas, Fabio Martínez, and Ruby Mejía de Gutiérrez. “Utilization of Powders and Fine Aggregates from the Recycling of Construction and Demolition Waste in the 3D Printing of Portland-Based Cementitious Materials”. Cleaner Materials, 2024, 100234. https://doi.org/10.1016/j.clema.2024.100234.