Introducing Cement Composite Agents During Printing Process to Enhance the 3D-Printed Concrete Interfaces Between Layers and Filaments (2025-12)¶
10.1016/j.conbuildmat.2025.144707
, , , Yao Xiaofei, Hu Jiawei, Shi Hao, , Zhao Yuan, Qin Jinhui, Tian Ziyang
Journal Article - Construction and Building Materials, Vol. 505, No. 144707
Abstract
Interface deficiencies between layers and filaments remain a significant challenge for 3D-printed concrete (3DPC). In this study, three methods with expansion agent (EA) modified cement composite agents were proposed: (1) brushing the interlayer interface slurry, (2) pre-filling inter-filament channel voids during printing process, and (3) combining the use of these two methods. 0 %, 3 %, 6 %, and 9 % were selected as the EA dosage of the agents. Four kinds of tests were conducted: compressive tests, direct tensile tests, computed tomography (CT) scanning, and scanning electron microscopy (SEM). In compressive tests, compared with the control group, the highest compressive strength occurred with the third method, increasing by 96.2 %, 136.1 %, and 77.4 % in three directions, respectively, while anisotropic parameters decreased to 0.03 from 0.22. In tensile tests, the optimal inter-filament interface bonding strengths were achieved at 9 % EA dosage with the third method, increasing by 180 %. The increase in mechanical strength resulted from the filling of channel voids and the improvement of interface microstructure. The AFt, produced from the hydration of EA, filled pores and acted as an interfacial connection bond, enhancing structural connectivity at the microscale and changing the orientation angles of micro pores. These reduce the anisotropy of 3DPC in the compressive and tensile tests. In combination with tensile test results, the inter-filament load-transfer mechanism was established. The findings reveal that the newly developed methods have the potential to address interface deficiency problems in 3DPC.
¶
52 References
- Abbaoui Khalid, Korachi Issam, Jai Mostapha, Šeta Berin et al. (2024-04)
3D Concrete Printing Using Computational Fluid Dynamics:
Modeling of Material-Extrusion with Slip-Boundaries - Aman Abdulkerim, Yang Zhe, Xin Yubo, Zhang Xiaoman et al. (2025-04)
Introducing Magnesium Oxide into 3D Printed Concrete to Mitigate Dry-Shrinkage - Aminpour Nima, Memari Ali (2024-12)
Analysis of Anisotropic Behavior in 3D Concrete Printing for Mechanical Property Evaluation - Bayrak Alper, Shaban Nefize, Sarıtaş Afsin, Meral Akgul Cagla (2025-07)
A Semi-Empirical Framework for Modeling Anisotropy, Spatial Variation and Failure Mechanisms in 3D Printed Concrete - Chen Wei, Guan Yongying, Zhu Binrong, Han Jinsheng et al. (2025-01)
Influence of Extruded Strip-Shape and Dimension on the Mechanical Properties and Pore-Characteristics of 3D Printed Geopolymer Concrete - Chen Yuxuan, Zhang Longfei, Wei Kai, Gao Huaxing et al. (2024-04)
Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide - Cuevas Villalobos Karla, Strzałkowski Jarosław, Kim Ji-Su, Ehm Clemens et al. (2023-02)
Towards Development of Sustainable Lightweight 3D Printed Wall Building Envelopes:
Experimental and Numerical Studies - Cuevas Villalobos Karla, Weinhold Joachim, Stephan Dietmar, Kim Ji-Su (2023-09)
Effect of Printing-Patterns on Pore-Related Microstructural Characteristics and Properties of Materials for 3D Concrete Printing Using In-Situ and Ex-Situ Imaging-Techniques - Danish Aamar, Khurshid Kiran, Mosaberpanah Mohammad, Ozbakkaloglu Togay et al. (2022-06)
Micro-Structural Characterization, Driving Mechanisms, and Improvement-Strategies for Inter-Layer Bond Strength of Additive Manufactured Cementitious Composites:
A Review - Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
A Critical Review - Du Longyu, Zhou Jiehang, Lai Jianzhong, Wu Kai et al. (2023-07)
Effect of Pore-Structure on Durability and Mechanical Performance of 3D Printed Concrete - Flor Juncal Luis, Loporcaro Giuseppe, Scott Allan, Clucas Don (2024-10)
Influence of Printing-Parameters on the Durability of 3D Printed Limestone-Calcined-Clay-Cement Mortar:
Overlap Between Filaments and Nozzle-Offset - Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
Layer-Interface Properties in 3D Printed Concrete:
Dual Hierarchical Structure and Micromechanical Characterization - Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
Towards Innovative and Sustainable Buildings:
A Comprehensive Review of 3D Printing in Construction - He Lewei, Chen Bingzhi, Liu Qimin, Chen Hao et al. (2024-07)
A Quasi-Exponential Distribution of Interfacial Voids and Its Effect on the Inter-Layer Strength of 3D Printed Concrete - Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
An Experimental and Computational Investigation - Huang Xin, Yang Weihao, Song Fangnian, Zou Jiuqun (2022-04)
Study on the Mechanical Properties of 3D Printing Concrete Layers and the Mechanism of Influence of Printing Parameters - Jia Zijian, Zhang Zedi, Jia Lutao, Cao Ruilin et al. (2023-09)
Effect of Different Expansive Agents on the Early-Age Structural Build-Up Process of Cement-Paste - Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
Measurement and Physical Origin - Kolawole John, Buswell Richard, Mahmood Sultan, Isa Muhammed et al. (2025-02)
On the Origins of Anisotropy of Extrusion-Based 3D Printed Concrete:
The Roles of Filament Skin and Agglomeration - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Lin Yini, Yan Jiachuan, Sun Ming, Han Xiaoyu et al. (2024-10)
Inter-Layer Cohesion in 3D Printed Concrete:
The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure - Liu Zhenbang, Li Mingyang, Wong Teck, Tan Ming (2024-05)
Determine the Effects of Pore Properties on the Mechanical Performances of 3D Concrete Printing Units with Experimental and Numerical Methods - Liu Chao, Wang Zhihui, Wu Yiwen, Liu Huawei et al. (2023-02)
3D Printing Concrete with Recycled Sand:
The Influence Mechanism of Extruded Pore-Defects on Constitutive Relationship - Liu Chao, Zhang Yamei, Banthia Nemkumar (2023-05)
Unveiling Pore Formation and Its Influence on Micromechanical Property and Stress-Distribution of 3D Printed Foam-Concrete Modified with Hydroxypropyl-Methylcellulose and Silica-Fume - Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure - Luo Surong, Lin Qian, Xu Wei, Wang Dehui (2023-03)
Effects of Interval Time and Interfacial Agents on the Mechanical Characteristics of Ultra-High-Toughness Cementitious Composites Under 3D Printed Technology - Luo Xiaoyu, Zhao Yuqi, Yao Xiaofei, Zou Cunjun et al. (2025-05)
3D Printing Concrete Interface Treatment Based on Physical and Chemical Methods:
A Review - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Mohamed Osama, Mishra Anamika, Isam Fida (2025-05)
An Overview of 3D Printed Concrete for Building Structures:
Material Properties, Sustainability, Future Opportunities, and Challenges - Moini Mohamadreza, Baghaie Ahmadreza, Rodriguez Fabian, Zavattieri Pablo et al. (2021-06)
Quantitative Microstructural Investigation of 3D Printed and Cast Cement-Pastes Using Micro-Computed Tomography- and Image-Analysis - Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
Durability Properties of 3D Printed Concrete - Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar? - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Teng Fei, Ye Junhong, Yu Jie, Li Heng et al. (2024-07)
Development of Strain-Hardening Cementitious Composites (SHCC) As Bonding Materials to Enhance Inter-Layer and Flexural Performance of 3D Printed Concrete - Wang Ziyue, Chen Zixuan, Xiao Jianzhuang, Ding Tao (2023-03)
Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar - Wang Li, Liu Yi, Yang Yu, Li Yanfeng et al. (2021-04)
Bonding Performance of 3D Printing Concrete with Self-Locking Interfaces Exposed to Compression-Shear and Compression-Splitting Stresses - Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
Experiments and Molecular Dynamics Studies - Weng Yiwei, Li Mingyang, Wong Teck, Tan Ming (2021-01)
Synchronized Concrete and Bonding-Agent-Deposition-System for Inter-Layer Bond Strength Enhancement in 3D Concrete Printing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Wu Yiwen, Liu Chao, Bai Guoliang, Liu Huawei et al. (2024-05)
Effect of Time Interval on the Inter-Layer Adhesion of 3D Printed Concrete with Recycled Sand:
Multi-Factor Influencing Mechanisms and Superabsorbent Polymer Enhancement - Wu Yiwen, Liu Chao, Liu Huawei, Bai Guoliang et al. (2024-07)
Mechanism of the Influence of Multi-Scale Pore-Structure on the Triaxial Mechanical Properties of 3D Printed Concrete with Recycled Sand - Xiao Jianzhuang, Bai Meiyan, Wu Yuching, Duan Zhenhua et al. (2024-01)
Inter-Layer Bonding Strength and Pore Characteristics of 3D Printed Engineered Cementitious Composites - Yan Yufei, Zhang Mo, Ma Guowei, Sanjayan Jay (2024-05)
Enhancing Inter-Layer Bonding Strength of 3D Printed Ternary Geopolymer Using Calcium-Carbonate-Whiskers Spray - Yang Rijiao, Zeng Qiang, Peng Yu, Wang Hailong et al. (2022-05)
Anomalous Matrix and Inter-Layer Pore-Structure of 3D Printed Fiber-Reinforced Cementitious Composites - Zhang Yu, Qiao Hongxia, Qian Rusheng, Xue Cuizhen et al. (2022-02)
Relationship Between Water-Transport Behavior and Inter-Layer Voids of 3D Printed Concrete - Zhang Yu, Yang Lin, Qian Rusheng, Liu Guojian et al. (2023-07)
Inter-Layer Adhesion of 3D Printed Concrete:
Influence of Layer Stacked Vertically
0 Citations
BibTeX
@article{luo_zhao_yang_yao.2025.ICCADPPtEt3PCIBLaF,
author = "Xiaoyu Luo and Yuqi Zhao and Min Yang and Xiaofei Yao and Jiawei Hu and Hao Shi and Mingyang Li and Yuan Zhao and Jinhui Qin and Ziyang Tian",
title = "Introducing Cement Composite Agents During Printing Process to Enhance the 3D-Printed Concrete Interfaces Between Layers and Filaments",
doi = "10.1016/j.conbuildmat.2025.144707",
year = "2025",
journal = "Construction and Building Materials",
volume = "505",
pages = "144707",
}
Formatted Citation
X. Luo, “Introducing Cement Composite Agents During Printing Process to Enhance the 3D-Printed Concrete Interfaces Between Layers and Filaments”, Construction and Building Materials, vol. 505, p. 144707, 2025, doi: 10.1016/j.conbuildmat.2025.144707.
Luo, Xiaoyu, Yuqi Zhao, Min Yang, Xiaofei Yao, Jiawei Hu, Hao Shi, Mingyang Li, Yuan Zhao, Jinhui Qin, and Ziyang Tian. “Introducing Cement Composite Agents During Printing Process to Enhance the 3D-Printed Concrete Interfaces Between Layers and Filaments”. Construction and Building Materials 505 (2025): 144707. https://doi.org/10.1016/j.conbuildmat.2025.144707.