Skip to content

Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites (2021-02)

10.1016/j.conbuildmat.2021.122647

 Long Wujian, Lin Can,  Tao Jie-Lin,  Ye Taohua, Fang Yuan
Journal Article - Construction and Building Materials, Vol. 282

Abstract

This study develops a modified limestone calcined clay cement (LC3) composite for 3D printing, by introducing silica fume (SF) and particle packing theory. Interactions between particle packing density, rheological properties, and printability of the composites were synergistically investigated. Moreover, the ratio of the sand-to-binder (S/B) was also analyzed to explore the performance response. Results show that when composites contain 33.33 wt% calcined clay, 16.67 wt% limestone powder and 5 wt% SF with S/B ratio of 2.5, the dynamic yield stress, static yield stress, and structural recovery can be significantly improved. The proposed mortar can be continuously extruded with few defects and exhibited an excellent shape retention during printing process. Furthermore, the embodied energy (EE) and embodied carbon emissions (ECO2e) per cubic meter of optimal mortar respectively decreased by 50.2% and 45.2% with respect to the plain mortar. Finally, the employment of LC3 containing SF together with optimum particle packing system mutually contributed to lower the cement content of composites that eventually led to the development of eco-efficient printable materials.

20 References

  1. Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
    The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing
  2. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  3. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  4. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  5. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  6. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  7. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  8. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  9. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  10. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  11. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  12. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  13. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  14. Panda Biranchi, Tan Ming (2018-11)
    Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application
  15. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  16. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  17. Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
    The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete
  18. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  19. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  20. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete

61 Citations

  1. Zhu Binrong, Qi Miao, Chen Wei, Pan Jinlong (2025-12)
    Anisotropic Mechanical Properties of 3D Printed Low-Carbon Concrete and Connection Strategies for Large-Scale Reusable Formwork in Digital Construction
  2. Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
    A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
    Rheology to Microstructure and Eco-Functionality
  3. Wang Yuting, Chen Meng, Zhang Tong, Zhang Mingzhong (2025-10)
    Influence of Limestone Calcined Clay on the Mechanical Behaviour of 3D Printed Engineered Cementitious Composites
  4. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa (2025-10)
    Next-Generation Net-Zero Composite for Underwater 3D Printing Construction:
    Hybrid Machine Learning Optimized LC3 with Recycled Rubber
  5. Paritala Spandana, Raj Shubham, Singh Prashant, Subramaniam Kolluru (2025-09)
    Designing 3D Printable Concrete by Integrating the Influence of Aggregate Characteristics
  6. Jesus Manuel, Dias Ricardo, Teixeira João, Delgado João et al. (2025-09)
    Optimisation of 3D Printable Cement- and Lime-Based Mortars for Built Heritage Rehabilitation
  7. Rabul H., Prem Prabhat, Ravichandran Darssni, Rathan RT Arjun (2025-09)
    Development of Fly Ash and Limestone Calcined Clay-Based Mixtures for Concrete 3D Printing
  8. Kua Harn, Shi A., Kajandran V., Lam T. et al. (2025-09)
    Toward Sustainable Construction 3D Printing:
    Limestone and Non-Calcined Recycled Marine Clay as Partial Cement Replacement
  9. Sun Junbo, Aslani Farhad, Mann Dhruv, Huang Bo et al. (2025-05)
    Mechanical and Piezoresistive Behaviour of 3D Printed Self-Sensing One-Way Concrete Slab
  10. Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
    From Printing to Performance:
    A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment
  11. Kurniati Eka, Kim Heejeong (2025-04)
    Enhancing the Printability of 3D Printing Limestone Calcined Clay Cement Using Hydroxyethyl Cellulose Admixture and Silica Fume
  12. Aktürk Büşra, Ertuğrul Onur, Özen Ömer, Oktay Didem et al. (2025-03)
    Influence of Nano-Silica and R-MgO on Rheological Properties, 3D Printability, and Mechanical Properties of One-Part Sodium Carbonate-Activated Slag-Based Mixes
  13. Duan Zhenhua, Tao Jie-Lin, Lin Can, Jiao Dengwu et al. (2025-02)
    3D Printing-Driven Dynamic Migration of Lightweight Microspheres in the Printable Mortars:
    Experiment and Modelling
  14. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
    From Local Earth to Modern Structures:
    A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction
  15. Kul Anil, Kocaer Öznur, Aldemir Alper, Yıldırım Gürkan et al. (2024-12)
    3D Printable One-Part Alkali-Activated Mortar Derived from Brick-Masonry-Wastes
  16. Jin Willy, Caron Jean-François, Ouellet-Plamondon Claudiane (2024-11)
    Minimizing the Carbon Footprint of 3D Printing Concrete:
    Leveraging Parametric LCA and Neural Networks Through Multi-Objective-Optimization
  17. Jin Willy, Roux Charlotte, Ouellet-Plamondon Claudiane, Caron Jean-François (2024-09)
    Life Cycle Assessment of Limestone-Calcined-Clay-Concrete:
    Potential for Low-Carbon 3D Printing
  18. Chajec Adrian, Šavija Branko (2024-09)
    The Effect of Using Surface Functionalized Granite-Powder-Waste on Fresh Properties of 3D Printed Cementitious Composites
  19. Baytak Tugba, Gdeh Tawfeeq, Jiang Zhangfan, Arce Gabriel et al. (2024-09)
    Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay
  20. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2024-08)
    Time-Dependent Behavior of 3D Printed Fiber-Reinforced Limestone-Calcined-Clay-Cement Concrete Under Sustained Loadings
  21. Fernand Muhirwa, Li Yaqi, Qian Qiwei, Chi Yin et al. (2024-08)
    Effects of Coarse Aggregates on 3D Printability and Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete
  22. Xu Wen, Jiang Dengjie, Zhao Qian, Wang Linbing (2024-08)
    Study on Printability of 3D Printing Carbon-Fiber-Reinforced Eco-Friendly Concrete:
    Characterized by Fluidity and Consistency
  23. Luo Qiling, Yu Ke-Ke, Long Wujian, Zheng Shuyi et al. (2024-07)
    Influence of Different Types of Superabsorbent Polymers on Fresh Mechanical Properties and Inter-Layer Adhesion of 3D Printed Concrete
  24. Ghaffar Seyed, Noaimat Yazeed, Chougan Mehdi, Kheetan Mazen (2024-06)
    Emerging Resources for the Development of Low-Carbon Cementitious Composites for 3D Printing Applications
  25. Mantha Bharadwaj, Sati Ala, Hosny Fatma, Abdallah Mohamed et al. (2024-06)
    A Generic 3D Printing Life Cycle Assessment (LCA) Framework for AEC Applications
  26. Zhuang Zicheng, Xu Fengming, Ye Junhong, Hu Nan et al. (2024-06)
    A Comprehensive Review of Sustainable Materials and Tool-Path-Optimization in 3D Concrete Printing
  27. Gu Yucun, Khayat Kamal (2024-05)
    Extrudability Window and Off-Line Test-Methods to Predict Buildability of 3D Printing Concrete
  28. Wang Xiangyu, Krishnan Padmaja, Celik Kemal (2024-04)
    Enhancing Carbonation and Thermal Insulation of Reactive Magnesium Oxide Cement (RMC)-Based 3D Printable Pastes with Cenospheres
  29. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  30. Kaliyavaradhan Senthil, Ambily Parukutty, Shekar Deepadharshan, Sebastian Shilpa (2024-02)
    Effect of Sand-Gradations on the Fresh Properties of 3D Printable Concrete
  31. Gamage Kumari, Fawzia Sabrina, Zahra Tatheer, Teixeira Muge et al. (2024-02)
    Advancement in Sustainable 3D Concrete Printing:
    A Review on Materials, Challenges, and Current Progress in Australia
  32. Jiang Xiongzhi, Li Yujia, Yang Zhe, Li Yangbo et al. (2024-02)
    Harnessing Path-Optimization to Enhance the Strength of Three-Dimensional Printed Concrete
  33. Li Feng, Zhang Rongrong, Zhou Siqi, Zhu Xingyi (2023-12)
    Printability and Hardening Performance of Three-Dimensionally-Printed Geopolymer Based on Lunar Regolith Simulant for Automated Construction of Lunar Infrastructure
  34. Li Haodao, Addai-NImoh Alfred, Kreiger Eric, Khayat Kamal (2023-12)
    Methodology to Design Eco-Friendly Fiber-Reinforced Concrete for 3D Printing
  35. Chen Yu, Rahmani Hossein, Schlangen Erik, Çopuroğlu Oğuzhan (2023-11)
    An Approach to Develop Set-on-Demand 3D Printable Limestone-Calcined-Clay-Based Cementitious Materials Using Calcium-Nitrate
  36. Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
    A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
    Material-Preparation, Construction-Process and Structure-Level
  37. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-10)
    Comparative Studies of LC³- and Fly-Ash-Based Blended Binders in Fiber-Reinforced Printed Concrete:
    Rheological and Quasi-Static Mechanical Characteristics
  38. Mallikarjuna Balichakra, Hareeswar M., Sharath P. (2023-09)
    Applications of Additive Manufacturing in Construction and Building Industries
  39. Matos Paulo, Zat Tuani, Lima Marcelo, Neto José et al. (2023-08)
    Effect of the Superplasticizer-Addition Time on the Fresh Properties of 3D Printed Limestone-Calcined-Clay-Cement (LC³) Concrete
  40. Nunes Gabrielly, Anjos Marcos, Lins Ana, Negreiros Ana et al. (2023-08)
    Evaluation of the Mechanical Behavior of Representative Volumetric Elements of 3DCP Masonry-Mixtures with Partial Replacement of Cement by Limestone-Filler and Metakaolin
  41. Arrêteau Manon, Fabien Aurélie, Haddaji Badreddine, Chateigner Daniel et al. (2023-07)
    Review of Advances in 3D Printing Technology of Cementitious Materials:
    Key Printing Parameters and Properties Characterization
  42. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  43. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  44. Daher Jana, Kleib Joelle, Benzerzour Mahfoud, Abriak Nor-Edine et al. (2023-06)
    The Development of Soil-Based 3D Printable Mixtures:
    A Mix-Design Methodology and a Case Study
  45. Heywood Kate, Nicholas Paul (2023-06)
    Sustainability and 3D Concrete Printing:
    Identifying a Need for a More Holistic Approach to Assessing Environmental Impacts
  46. Fernandez Letízia, Caldas Lucas, Mendoza Reales Oscar (2023-05)
    Environmental Evaluation of 3D Printed Concrete Walls Considering the Life Cycle Perspective in the Context of Social Housing
  47. Yu Qian, Zhu Binrong, Li Xuesen, Meng Lingqi et al. (2023-04)
    Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag
  48. Noaimat Yazeed, Chougan Mehdi, Kheetan Mazen, Mandhari Othman et al. (2023-04)
    3D Printing of Limestone-Calcined-Clay-Cement:
    A Review of Its Potential Implementation in the Construction-Industry
  49. Fonseca Mariana, Matos Ana (2023-03)
    3D Construction Printing Standing for Sustainability and Circularity:
    Material-Level Opportunities
  50. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2023-03)
    Developing 3D Printable and Buildable Limestone-Calcined-Clay-Based Cement Composites with Higher Aggregate Content
  51. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-03)
    Influence of Limestone-Calcined-Clay-Cement on Properties of 3D Printed Concrete for Sustainable Construction
  52. Tinoco Matheus, Gouvêa Lucas, Cássia Magalhães Martins Karenn, Toledo Filho Romildo et al. (2022-12)
    The Use of Rice Husk Particles to Adjust the Rheological Properties of 3D Printable Cementitious Composites Through Water Sorption
  53. Zhou Longfei, Gou Mifeng, Zhang Haibo (2022-12)
    Investigation on the Applicability of Bauxite-Tailings as Fine Aggregate to Prepare 3D Printing Mortar
  54. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-11)
    Criticality of Binder-Aggregate Interaction for Buildability of 3D Printed Concrete Containing Limestone-Calcined-Clay
  55. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  56. Khosravani Mohammad, Haghighi Azadeh (2022-08)
    Large-Scale Automated Additive Construction:
    Overview, Robotic Solutions, Sustainability, and Future Prospect
  57. Tao Jie-Lin, Lin Can, Luo Qiling, Long Wujian et al. (2022-07)
    Leveraging Internal Curing Effect of Fly-Ash-Cenosphere for Alleviating Autogenous Shrinkage in 3D Printing
  58. Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
    Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
    A Systematic Literature Review
  59. Chen Mingxu, Li Haisheng, Yang Lei, Wang Shoude et al. (2022-03)
    Rheology and Shape-Stability-Control of 3D Printed Calcium-Sulphoaluminate-Cement Composites Containing Paper-Milling-Sludge
  60. Nair Sooraj, Sant Gaurav, Neithalath Narayanan (2021-11)
    Mathematical Morphology-Based Point-Cloud-Analysis-Techniques for Geometry-Assessment of 3D Printed Concrete Elements
  61. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete

BibTeX
@article{long_lin_tao_ye.2021.PaPPo3PLCCCC,
  author            = "Wujian Long and Can Lin and Jie-Lin Tao and Taohua Ye and Yuan Fang",
  title             = "Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites",
  doi               = "10.1016/j.conbuildmat.2021.122647",
  year              = "2021",
  journal           = "Construction and Building Materials",
  volume            = "282",
}
Formatted Citation

W. Long, C. Lin, J.-L. Tao, T. Ye and Y. Fang, “Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites”, Construction and Building Materials, vol. 282, 2021, doi: 10.1016/j.conbuildmat.2021.122647.

Long, Wujian, Can Lin, Jie-Lin Tao, Taohua Ye, and Yuan Fang. “Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites”. Construction and Building Materials 282 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122647.