Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag (2023-04)¶
Yu Qian, , Li Xuesen, Meng Lingqi, , ,
Journal Article - Journal of Building Engineering, Vol. 72
Abstract
The primary obstacle to the widespread adoption of 3D printed concrete technology is the high carbon emissions associated with the heavy use of cement in the mixture. The main solutions entail increasing the use of coarse aggregate or identifying suitable cement substitutes. This research explores the potential of utilizing steel slag as a viable substitute for cement. This research evaluates the impact of steel slag content on the rheological and mechanical properties, as well as the ecological impact, of 3D printed concrete. The results show that using up to 10% steel slag improves the buildability of 3DPC. However, the rheological property of 3D printed concrete decreases dramatically when the content is more than 20%. In addition, the weakening of the hydration rate of steel slag will lead to the decline of early mechanical strength, but beneficial to the recovery of later mechanical strength and the reduction of mechanical anisotropy. The incorporation of 20% steel slag effectively reduces the environmental impact and cost of 3D printed concrete, while maintaining its rheological and mechanical properties in the later stage. This study presents a novel type of 3D printable concrete that offers economic and environmental benefits, providing a promising solution for green and low-carbon construction with 3D printed concrete.
¶
42 References
- Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Khayat Kamal et al. (2021-10)
Digital Fabrication of Eco-Friendly Ultra-High-Performance Fiber-Reinforced Concrete - Chen Yuning, Jia Lutao, Liu Chao, Zhang Zedi et al. (2022-01)
Mechanical Anisotropy Evolution of 3D Printed Alkali-Activated Materials with Different GGBFS-FA Combinations - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
Mechanical Behavior of Printed Strain-Hardening Cementitious Composites - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
An Experimental and Computational Investigation - Hossain Md., Zhumabekova Altynay, Paul Suvash, Kim Jong (2020-10)
A Review of 3D Printing in Construction and Its Impact on the Labor Market - Ivanova Irina, Mechtcherine Viktor (2020-03)
Effects of Volume Fraction and Surface Area of Aggregates on the Static Yield-Stress and Structural Build-Up of Fresh Concrete - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites - Liu Chao, Chen Yuning, Xiong Yuanliang, Jia Lutao et al. (2022-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Buildability of 3D Printing Foam-Concrete:
From Water State and Flocculation Point of View - Liu Xiongfei, Li Qi, Wang Fang, Ma Guowei (2022-07)
Systematic Approach for Printability Evaluation and Mechanical Property Optimization of Spray-Based 3D Printed Mortar - Liu Zhixin, Li Mingyang, Weng Yiwei, Qian Ye et al. (2020-03)
Modelling- and Parameter-Optimization for Filament-Deformation in 3D Cementitious Material-Printing Using Support-Vector-Machine - Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing - Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites - Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing - Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
Technology Readiness:
A Global Snapshot of 3D Concrete Printing and the Frontiers for Development - Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
Large-Scale Digital Concrete Construction:
CONPrint3D Concept for On-Site, Monolithic 3D Printing - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
Plastic Shrinkage Cracking in 3D Printed Concrete - Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
Additive Manufacturing (3D Printing):
A Review of Materials, Methods, Applications and Challenges - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete - Panda Biranchi, Tan Ming (2018-11)
Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application - Panda Biranchi, Tay Yi, Paul Suvash, Tan Ming (2018-05)
Current Challenges and Future Potential of 3D Concrete Printing - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2023-01)
3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Perrot Arnaud, Rangeard Damien, Courteille Eric (2018-04)
3D Printing of Earth-Based Materials:
Processing Aspects - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
A Systematic Literature Review - Tobi A., Omar S., Yehia Z., Al-Ojaili S. et al. (2018-03)
Cost Viability of 3D Printed House in UK - Xu Jie, Ding Lieyun, Love Peter (2017-01)
Digital Reproduction of Historical Building Ornamental Components:
From 3D Scanning to 3D Printing - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
37 Citations
- Pal Biswajit, Chourasia Ajay, Tomar Milan, Pradeep Kumar (2026-01)
Influence of Interfilament Bond Characteristics on the Load–Deflection Behavior of 3D Printed Beam:
A Numerical Study - Zhu Binrong, Qi Miao, Chen Wei, Pan Jinlong (2025-12)
Anisotropic Mechanical Properties of 3D Printed Low-Carbon Concrete and Connection Strategies for Large-Scale Reusable Formwork in Digital Construction - Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
A Bibliometric and Systematic Review - Zhou Jiehang, Du Longyu, Wu Kai, Lai Jianzhong et al. (2025-11)
Effective Factors and a Prediction Method on Extrusion Flow of 3D Printed Concrete - Zhang Jiao-Long, Yuan Yong, Fatoyinbo Imoleayo, Zhou Lujie et al. (2025-11)
3D-Printable Mortars Incorporating Municipal Solid Waste Incineration Bottom Ash:
Linking Hydration to Extrudability and Mechanical Performance - Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures - Rahman Mahfuzur, An Dong, Rawat Sanket, Yang Richard et al. (2025-09)
Development of Green 3D Printable Cementitious Composites Using Multi-Response Optimisation Method - Alonso-Cañon Sara, Blanco-Fernandez Elena, Cuesta-Astorga Eva, Indacoechea-Vega Irune et al. (2025-09)
Selection of the Best 3D Printing High-Performance Mortars Using Multi-Criteria Analysis - Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
Industrial Waste in 3D Printed Concrete:
A Mechanistic Review on Rheological Control and Printability - Yu Qian, Zhang Yamei, Pan Jinlong (2025-08)
Multi-Scale Orthotropic Damage Constitutive Model for 3D Printed Concrete Informed by Pore Structure - Qi Pengfei, Wang Ziyuan, Yu Ruifang, Pei Qiang et al. (2025-05)
Optimization Design and Regression Model Analysis of Mechanical Properties of 3D Printed Concrete - Kaya Ebru, Ciza Baraka, Yalçınkaya Çağlar, Felekoğlu Burak et al. (2025-05)
A Comparative Study on the Effectiveness of Fly Ash and Blast Furnace Slag as Partial Cement Substitution in 3D Printable Concrete - Tseng Kuo-Chang, Chi Maochieh, Yeih Weichung, Huang Ran (2025-04)
Influence of Slag/Fly Ash as Partial Cement Replacement on Printability and Mechanical Properties of 3D-Printed Concrete - Chen Wei, Pan Jinlong, Zhu Binrong, Han Jinsheng et al. (2025-03)
Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete - Kuang Weifeng, Pavlenko Petro, Guo Haoyu, Tian Kuo et al. (2025-03)
Utilization of Machine-Made Sand Waste in 3D-Printed Ecological Concrete for Artificial Reefs - Yuan Yong, Fatoyinbo Imoleayo, Sheng Ruiyi, Wang Qiling et al. (2025-02)
Advancing the Applicability of Recycled Municipal Solid Waste Incineration Bottom Ash as a Cement Substitute in Printable Concrete:
Emphasis on Rheological and Microstructural Properties - Chen Meng, Li Jiahui, Zhang Tong, Zhang Mingzhong (2025-01)
3D Printability of Recycled Steel-Fiber-Reinforced Ultra-High-Performance Concrete - Kopitha Kirushnapillai, Rajeev Pathmanathan, Sanjayan Jay, Elakneswaran Yogarajah (2024-12)
CO2 Sequestration and Low-Carbon-Strategies in 3D Printed Concrete - Wu Mushuang, Wang Zixiao, Chen Yuxuan, Zhu Mengyu et al. (2024-11)
Effect of Steel-Slag on Rheological and Mechanical Properties of Sulfoaluminate-Cement-Based Sustainable 3D Printing Concrete - Ding Yahong, Tong Jiaqi, Zhang Meixiang, Guo Shuqi et al. (2024-11)
Effect of Aggregate Gradation on the Properties of 3D Printed Recycled Coarse Aggregate Concrete - Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
Sustainability Principles in 3D Concrete Printing:
Analysing Trends, Classifying Strategies, and Future Directions - Hassan Zohaib, Raza Saim, Shafei Behrouz, Mahoutian Mehrdad et al. (2024-11)
Innovations to Improve 3D Concrete Printing of Portland Cement-Steel-Slag Blended Mortars - Chen Yidong, Zhang Yunsheng, Quan Hongzhu, Liu Cheng et al. (2024-10)
Early-Age Time-Dependent Mechanical Properties of 3D Printed Concrete with Coarse Aggregates - Over Derya, Ozbakan Nesil, Bustani Mehmet, Karali Bulut (2024-10)
An Investigation of Rheological Properties and Sustainability of Various 3D Printing Concrete Mixtures with Alternative Binders and Rheological Modifiers - Tran Nhi, Tran Mien, Tran Jonathan, Nguyen Anh et al. (2024-09)
Eco-Friendly 3D Printed Concrete Using Steel-Slag-Aggregate:
Buildability, Printability and Mechanical Properties - Sheng Zhaoliang, Zhu Binrong, Cai Jingming, Han Jinsheng et al. (2024-09)
Influence of Waste-Glass-Powder on Printability and Mechanical Properties of 3D Printing Geopolymer Concrete - Hassan Zohaib, Bernal Susan, Raza Saim, Kammer David et al. (2024-09)
Feasibility-Assessment of 3D Printability of Portland-Cement-Steel-Slag Blended Mortar - Khan Mehran, McNally Ciaran (2024-09)
A Review of Developments in Low-Carbon 3D Printed Concrete in Europe:
Steps Towards Sustainable Construction - Bong Shin, Du Hongjian (2024-06)
Sustainable Additive Manufacturing of Concrete with Low-Carbon Materials - Ding Yahong, Zhang Yaqi, Zhao Yu, Zhang Meixiang et al. (2024-04)
Impact of Pre-Soaked Lime-Water-Carbonized Recycled Fine Aggregate on Mechanical Properties and Pore-Structure of 3D Printed Mortar - Sheng Zhaoliang, Zhu Binrong, Cai Jingming, Li Xuesen et al. (2024-03)
Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete - Pal Biswajit, Chourasia Ajay, Kapoor Ashish (2024-01)
Intricacies of Various Printing Parameters on Mechanical Behavior of Additively Constructed Concrete - Khan Mehran, McNally Ciaran (2023-11)
A Holistic Review on the Contribution of Civil Engineers for Driving Sustainable Concrete Construction in the Built Environment - Tong Jiaqi, Ding Yahong, Lv Xiuwen, Ning Wei (2023-11)
Effect of Carbonated Recycled Coarse Aggregates on the Mechanical Properties of 3D Printed Recycled Concrete - Zhu Binrong, Wang Yufei, Sun Junbo, Wei Yang et al. (2023-10)
An Experimental Study on the Influence of Waste-Rubber-Particles on the Compressive, Flexural and Impact Properties of 3D Printable Sustainable Cementitious Composites - Kurniati Eka, Kim Heejeong (2023-10)
Utilizing Industrial Byproducts for Sustainable Three-Dimensional-Printed Infrastructure Applications:
A Comprehensive Review - Hu Hailong, Huang Jian, Wang Tiezhu, Manuka Mesfin et al. (2023-09)
Impact of Calcium Sulfoaluminate Cement on Printability and Early Strength Development of a Slag-Based 3D Printing Cementitious Material
BibTeX
@article{yu_zhu_li_meng.2023.IotRaMPo3PEFCwSS,
author = "Qian Yu and Binrong Zhu and Xuesen Li and Lingqi Meng and Jingming Cai and Yamei Zhang and Jinlong Pan",
title = "Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag",
doi = "10.1016/j.jobe.2023.106621",
year = "2023",
journal = "Journal of Building Engineering",
volume = "72",
}
Formatted Citation
Q. Yu, “Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag”, Journal of Building Engineering, vol. 72, 2023, doi: 10.1016/j.jobe.2023.106621.
Yu, Qian, Binrong Zhu, Xuesen Li, Lingqi Meng, Jingming Cai, Yamei Zhang, and Jinlong Pan. “Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag”. Journal of Building Engineering 72 (2023). https://doi.org/10.1016/j.jobe.2023.106621.