Skip to content

Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams (2025-03)

10.1016/j.engstruct.2025.120064

Wang Qiang, Yang Wenwei,  Wang Li, Bai Gang,  Ma Guowei
Journal Article - Engineering Structures, Vol. 332, No. 120064

Abstract

Reinforced 3D printed concrete (3DPC) truss structure, owing to its ease of fabrication and light-weight configurations, is increasingly accepted as a popular load-bearing system. However, the understanding into its reinforcement design and structural performance is still scarce up to now, failing to guide the wide application efficiently and appropriately. To upgrade current design methods and improve structural performance, this study introduces a workflow for integrating the topology optimization, reinforcement design and structural performance evaluation into the design of reinforced 3DPC truss beams. In the proposed workflow, the topology optimization process considering the printing constraints was employed to produce the 3DPC truss configuration, incorporating only tension and compression struts to reduce structural weight and enhance stress transfer efficiency. The reinforcing bar characteristics in the struts were identified based on the proposed reinforcing bar selection criterion from the perspective of bond performance. The overall reinforcement strategies between the printed layers were designed based on the stress flow to endow the un-reinforced truss with load-bearing and ductile properties. The flexural performance of the topology optimization-based reinforced 3DPC truss beams was experimentally evaluated. A finite element model was afterwards developed to support a parametric study aimed at optimizing the flexural design. Significantly, the topology optimized 3DPC truss beams demonstrated to achieve a 94 % improvement in strength-to-weight ratio while preserving the same failure deflection-to-weight ratio as traditional reinforce concrete (RC) beams.

41 References

  1. Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2022-05)
    Bonding Strength of Steel-Rebars Perpendicular to the Hardened 3D Printed Concrete-Layers
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  4. Baktheer Abedulgader, Claßen Martin (2024-07)
    A Review of Recent Trends and Challenges in Numerical Modeling of the Anisotropic Behavior of Hardened 3D Printed Concrete
  5. Baz Bilal, Aouad Georges, Leblond Philippe, Mansouri Omar et al. (2020-05)
    Mechanical Assessment of Concrete:
    Steel Bonding in 3D Printed Elements
  6. Bester Frederick, Heever Marchant, Kruger Jacques, Zijl Gideon (2020-11)
    Reinforcing Digitally Fabricated Concrete:
    A Systems Approach Review
  7. Bester Frederick, Kruger Jacques, Zijl Gideon (2023-03)
    Rivet Reinforcement for Concrete Printing
  8. Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
    Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete
  9. Bos Freek, Menna Costantino, Pradena Mauricio, Kreiger Eric et al. (2022-03)
    The Realities of Additively Manufactured Concrete Structures in Practice
  10. Chen Mingxu, Xu Jiabin, Yuan Lianwang, Zhao Piqi et al. (2024-03)
    Use of Creep and Recovery-Protocol to Assess the Printability of Fiber-Reinforced 3D Printed White-Portland-Cement Composites
  11. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  12. Ding Tao, Qin Fei, Xiao Jianzhuang, Chen Xiaoming et al. (2022-01)
    Experimental Study on the Bond Behavior Between Steel-Bars and 3D Printed Concrete
  13. Duarte Gonçalo, Duarte José, Brown Nathan, Memari Ali et al. (2024-06)
    Design for Early-Age Structural Performance of 3D Printed Concrete Structures:
    A Parametric Numerical Modeling Approach
  14. Duballet Romain, Baverel Olivier, Dirrenberger Justin (2017-08)
    Classification of Building Systems for Concrete 3D Printing
  15. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
    Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies
  16. Guan Jingyuan, Wang Li, Huang Yimiao, Ma Guowei (2024-12)
    3D Printed Concrete Composite Slabs Fabricated by Pre-Stressed Reinforced Permanent Formwork:
    Design, Manufacturing, and Performance
  17. Han Xiaoyu, Yan Jiachuan, Liu Mingjian, Huo Liang et al. (2021-10)
    Experimental Study on Large-Scale 3D Printed Concrete Walls Under Axial Compression
  18. Hoffmann Marcin, Żarkiewicz Krzysztof, Zieliński Adam, Skibicki Szymon et al. (2021-05)
    Foundation Piles:
    A New Feature for Concrete 3D Printers
  19. Huang Xin, Yang Weihao, Song Fangnian, Zou Jiuqun (2022-04)
    Study on the Mechanical Properties of 3D Printing Concrete Layers and the Mechanism of Influence of Printing Parameters
  20. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  21. Li Yu, Wu Hao, Xie Xinjie, Zhang Liming et al. (2024-02)
    FloatArch:
    A Cable-Supported, Unreinforced, and Re-Assemblable 3D Printed Concrete Structure Designed Using Multi-Material Topology-Optimization
  22. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  23. Liu Yan, Jewett Jackson, Carstensen Josephine (2020-07)
    Experimental Investigation of Topology-Optimized Deep Reinforced Concrete Beams with Reduced Concrete Volume
  24. Liu Zhenbang, Li Mingyang, Wang Xiangyu, Wang Sizhe et al. (2024-07)
    Axial Performances of the Steel-Rebar-Reinforced Column Confined by the Steel-Cable-Reinforced 3D Concrete Printing Permanent Formwork
  25. Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
    3D Printing Concrete Structures:
    State of the Art, Challenges, and Opportunities
  26. Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
    Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing
  27. Pastore Tommaso, Menna Costantino, Asprone Domenico (2022-01)
    Bézier-Based Biased Random-Key Genetic Algorithm to Address Printability-Constraints in the Topology-Optimization of Concrete Structures
  28. Robayo-Salazar Rafael, Gutiérrez Ruby, Villaquirán-Caicedo Mónica, Delvasto Arjona Silvio (2022-12)
    3D Printing with Cementitious Materials:
    Challenges and Opportunities for the Construction Sector
  29. Şahin Hatice, Mardani Ali (2021-12)
    Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
    A State of the Art Review
  30. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  31. Sun Xiaoyan, Gao Chao, Wang Hailong (2020-10)
    Bond-Performance Between BFRP-Bars and 3D Printed Concrete
  32. Suryanto Benny, Higgins J., Aitken M., Tambusay Asdam et al. (2023-10)
    Developments in Portland Cement/GGBS Binders for 3D Printing Applications:
    Material-Calibration and Structural Testing
  33. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  34. Wan Qian, Yang Wenwei, Wang Li, Ma Guowei (2023-04)
    Global Continuous Path-Planning for 3D Concrete Printing Multi-Branched Structure
  35. Wang Zhibin, Jia Lutao, Deng Zhicong, Zhang Chao et al. (2022-08)
    Bond Behavior Between Steel-Bars and 3D Printed Concrete:
    Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating
  36. Wang Qiang, Yang Wenwei, Wang Li, Zhang Dan et al. (2024-09)
    Flexural Performance of the Integrated Steel-Truss-Reinforced 3D Printed Concrete Beams:
    Experimental and Numerical Analysis
  37. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  38. Yang Wenwei, Wang Li, Ma Guowei, Feng Peng (2023-06)
    An Integrated Method of Topological-Optimization and Path-Design for 3D Concrete Printing
  39. Ye Junhong, Zhuang Zicheng, Teng Fei, Yu Jie et al. (2024-07)
    Comparative Environmental-Assessment of 3D Concrete Printing with Engineered Cementitious Composites
  40. Zhou Wen, Zhu He, Hu Wei-Hsiu, Wollaston Ryan et al. (2024-02)
    Low-Carbon, Expansive Engineered Cementitious Composites (ECC) In the Context of 3D Printing
  41. Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
    3D Concrete Printing of Permanent Formwork for Concrete Column Construction

11 Citations

  1. Nguyen Vuong, Jie Cheah, Lao Junying, Huanyu Zhao et al. (2026-01)
    Performance of Lightweight, Reinforced, and Assemblable 3D-Printed Concrete Columns with Low-Carbon Engineered Cementitious Composites
  2. Kiyani Muhammad, Kamal Muhammad, Hussain Syed, Emaan Rajja et al. (2026-01)
    A Novel Arch Infill for 3D Concrete Printed Beams:
    A Comparative Study of Flexural Performance Against Truss and Solid Designs
  3. Wang Xiangyu, Wang Sizhe, Deng North, Liu Zhenbang et al. (2026-01)
    Robotic Rebar Insertion and Grouting for Reinforcement of 3D Printed Concrete:
    Technique Development and Bond Behavior Characterization
  4. Deng North, Wang Sizhe, Li Mingyang, Wang Xiangyu et al. (2025-12)
    A Perforated Strip-Based Three-Dimensional Reinforcement Strategy for 3D Printed Concrete:
    Flexural Testing of Beams as a Proof of Concept
  5. Sun Yuhang, Yang Xiaojie, Liu Xiongfei, Ma Guowei et al. (2025-12)
    Coordinated Spray-Based 3D Printing of Reinforced Concrete Structure:
    A Multi-Angle Strategy for Blockage Mitigation
  6. Wang Li, Fan Haichen, Wang Qiang, Bai Gang et al. (2025-09)
    Design Method and Force Transmission Mechanism of 3D Printed Concrete Truss Beams Reinforced with 3D Conical Reinforcement
  7. Chen Wenguang, Liang Long, Ye Junhong, Liu Lingfei et al. (2025-09)
    Machine Learning-Enabled Performance-Based Design of Three-Dimensional Printed Engineered Cementitious Composites
  8. Bai Gang, Wang Li, Li Zhijian, Qu Yao et al. (2025-09)
    Integrating Prestress into 3D Printed Ultra-High Performance Concrete Composite Beams for Superior Flexural Performance
  9. Lin Xing-Tao, Xu Shuhao, Chen Xiangsheng (2025-08)
    Optimization of Building Structures Based on Additive Manufacturing:
    A Review
  10. Zhang Chao, Ren Juanjuan, Zhang Shihao, Guo Yipu et al. (2025-07)
    Advanced Impact Resistance Design Through 3D-Printed Concrete Technology:
    Unleashing the Potential of Additive Manufacturing for Protective Structures
  11. Ding Shengxuan, Li Jiren, Wang Mingqiang (2025-07)
    Study on Mechanical Properties of Composite Basalt Fiber 3D-Printed Concrete Based on 3D Meso-Structure

BibTeX
@article{wang_yang_wang_bai.2025.RDaSPftTO3PCTB,
  author            = "Qiang Wang and Wenwei Yang and Li Wang and Gang Bai and Guowei Ma",
  title             = "Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams",
  doi               = "10.1016/j.engstruct.2025.120064",
  year              = "2025",
  journal           = "Engineering Structures",
  volume            = "332",
  pages             = "120064",
}
Formatted Citation

Q. Wang, W. Yang, L. Wang, G. Bai and G. Ma, “Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams”, Engineering Structures, vol. 332, p. 120064, 2025, doi: 10.1016/j.engstruct.2025.120064.

Wang, Qiang, Wenwei Yang, Li Wang, Gang Bai, and Guowei Ma. “Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams”. Engineering Structures 332 (2025): 120064. https://doi.org/10.1016/j.engstruct.2025.120064.