Skip to content

Influential Factors on Mechanical Properties and Microscopic Characteristics of Underwater 3D Printing Concrete (2023-08)

10.1016/j.jobe.2023.107571

 Wang Yang, Qiu Liu-Chao, Hu Yan-Ye, Cheng Song-Gui, Liu Yi
Journal Article - Journal of Building Engineering, Vol. 77, No. 107571

Abstract

Underwater 3D Printing Concrete (U3DPC) technology can be a promising approach to address the challenges of renewable marine energy and coastal protection. Conducting extensive research on the mechanical properties of U3DPC is crucial for its successful implementation. This study investigates various factors, including printing environment, construction methods (mold-cast and printing), curing age, and material composition, regarding their significance on the mechanical properties of U3DPC. The compressive strength, anisotropy, interlayer bonding, and interface microstructure are evaluated. The research findings reveal that compared to casting specimens in air, the printing method and water environmental factors result in approximately 20% and 15.1% reduction in the compressive strength of U3DPC, respectively. U3DPC exhibits different anisotropic variations compared to specimens printed in air, attributed to weak interlayer bonding interfaces caused by external water. The influence of material components on the interlayer bonding strength of U3DPC has a critical threshold that should not be exceeded; otherwise, it weakens the interlayer bonding. The variation in fine aggregate types and fibers leads to changes in interlayer interface roughness, where excessive roughness captures more ambient water due to the “dog-tooth overlapping” structure, thereby reducing the adhesive capacity. The pore distribution reveals the underlying mechanism of how interface roughness affects interlayer bonding.

28 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  2. Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
    Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  3. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  4. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  5. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication
  6. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  7. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-12)
    Evaluation of the Mechanical Properties of a 3D Printed Mortar
  8. Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
    Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate
  9. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  10. Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
    A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing
  11. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  12. Mazhoud Brahim, Perrot Arnaud, Picandet Vincent, Rangeard Damien et al. (2019-04)
    Underwater 3D Printing of Cement-Based Mortar
  13. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2021-09)
    Modelling the Inter-Layer Bond Strength of 3D Printed Concrete with Surface Moisture
  14. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  15. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  16. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  17. Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
    Microstructural Characterization of 3D Printed Cementitious Materials
  18. Putten Jolien, Schutter Geert, Tittelboom Kim (2019-07)
    Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials
  19. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  20. Seo Eun-A, Kim Won-Woo, Kim Sung-Wook, Kwon Hongkyu et al. (2023-03)
    Mechanical Properties of 3D Printed Concrete with Coarse Aggregates and Polypropylene-Fiber in the Air and Underwater Environment
  21. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
    3D Printed Concrete for Large-Scale Buildings:
    An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects
  22. Sun Bochao, Li Peichen, Wang Dianchao, Ye Jun et al. (2023-03)
    Evaluation of Mechanical Properties and Anisotropy of 3D Printed Concrete at Different Temperatures
  23. Tao Yaxin, Mohan Manu, Rahul Attupurathu, Yuan Yong et al. (2022-08)
    Stiffening Controllable Concrete Modified with Redispersible Polymer Powder for Twin-Pipe Printing
  24. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  25. Woo Seong-Jin, Yang Jun-Mo, Lee Hojae, Kwon Hongkyu (2021-10)
    Comparison of Properties of 3D Printed Mortar in Air vs. Underwater
  26. Xu Yanqun, Yuan Qiang, Li Zemin, Shi Caijun et al. (2021-09)
    Correlation of Inter-Layer Properties and Rheological Behaviors of 3DPC with Various Printing Time Intervals
  27. Zareiyan Babak, Khoshnevis Behrokh (2017-06)
    Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
    Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness
  28. Zhao Kang, Hu Zhongjun, Wang Boxin, Li Quanheng et al. (2023-01)
    Effect of Roughness and Adhesive on the Strength of Concrete-to-Concrete Interfaces Cast from 3D Printed Prefabricated Plastic Formworks

20 Citations

  1. Pal Biswajit, Chourasia Ajay, Tomar Milan, Pradeep Kumar (2026-01)
    Influence of Interfilament Bond Characteristics on the Load–Deflection Behavior of 3D Printed Beam:
    A Numerical Study
  2. Rodriguez Fabian, Vugteveen Caiden, Fross Xavier, Wei Hui et al. (2025-12)
    3D Printing of Cement-Based Materials Using Seawater for Simulated Marine Environments
  3. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Mustafa Ali et al. (2025-12)
    Passive Determination of Anisotropic Compressive Strength of 3D Printed Concrete Using Multiple Neural Networks Enhanced with Explainable Machine Learning (XML)
  4. Thib Raghed, Rémond Sébastien, Belayachi Naima, Rémond Elise et al. (2025-11)
    3D Printable Eco-Efficient Mortars Under Salt Water:
    Mix Design and Characterization
  5. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa (2025-10)
    Next-Generation Net-Zero Composite for Underwater 3D Printing Construction:
    Hybrid Machine Learning Optimized LC3 with Recycled Rubber
  6. Elhag Ahmed, Mabrouk Abdelkader, Ghazouani Nejib, Nasir Umara (2025-09)
    Advances in Sustainable 3D-Printed Geopolymer Concrete:
    Materials, Performance, and Environmental Impact in Next Generation Green Construction
  7. Ozturk Onur, Lunsford Caleb, Strait James, Nair Sriramya (2025-08)
    Breaking Barriers in Underwater Construction:
    A Two-Stage 3D Printing System with On-Demand Material Adaptation
  8. Yang Xia, Wang Jiuyuan, Huang Han, Wu Gengchen et al. (2025-08)
    Anti-Washout Cement-Based Material for Under-Seawater 3D Concrete Printing:
    Design, Mechanical Properties and Microstructural Analysis
  9. An Ning, Wang Huai, Wang Peijun, Xu Chuanhua et al. (2025-04)
    Tension-Compression Anisotropic Cohesion Model for the Interlayer Interface of 3D-Printed Concrete Compression Specimens
  10. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2025-04)
    Novel Strategy for Enhancing Rheological Properties and Interlayer Bonding in Underwater 3D Concrete Printing
  11. Yang Kun, Yuan Jingbo, Wang Yibo, Yang Fan et al. (2025-03)
    Optimization of 3D Printing Nozzle Structure and the Influence of Process Parameters on the Forming Performance of Underwater Concrete
  12. Chourasia Ajay, Pal Biswajit, Kapoor Ashish (2025-02)
    Influence of Printing Direction and Interlayer Printing Time on the Bond Characteristics and Hardened Mechanical Properties of Agro-Industrial Waste-Based 3D Printed Concrete
  13. An Xuehui, Liang Qimin, Li Pengfei, You Wei et al. (2025-02)
    Experimental Assessment on Printing Performance and Mechanical Properties of Underwater Self-Protecting 3D Printing Concrete
  14. Jiang Youbau, Gao Pengxiang, Adhikari Sondipon, Yao Xiaofei et al. (2024-12)
    Studies on the Mechanical Properties of Inter-Layer Interlocking 3D Printed Concrete Based on a Novel Nozzle
  15. Shivendra Bandoorvaragerahalli, Sharath Chandra Sathvik, Singh Atul, Kumar Rakesh et al. (2024-09)
    A Path Towards SDGs:
    Investigation of the Challenges in Adopting 3D Concrete Printing in India
  16. Li Leo, Zhang Guang-Hu (2024-08)
    Feasibility of Underwater 3D Printing:
    Effects of Anti-Washout-Admixtures on Printability and Strength of Mortar
  17. Srinivas Dodda, Ventrapragada Durga, Panda Biranchi, Sitharam Thallak (2024-07)
    A Study on the Effect of Mixture Constituents on Washout-Resistance, Mechanical, and Transport Properties in the Context of Underwater 3D Concrete Printing
  18. Korniejenko Kinga, Gądek Szymon, Dynowski Piotr, Tran Doan et al. (2024-02)
    Additive Manufacturing in Underwater Applications
  19. Pal Biswajit, Chourasia Ajay, Kapoor Ashish (2024-01)
    Intricacies of Various Printing Parameters on Mechanical Behavior of Additively Constructed Concrete
  20. Chen Kailun, Liu Qiong, Chen Bing, Zhang Shishun et al. (2024-01)
    A Review on Effect of Raw Materials on the Performance of 3D Printed Geopolymer System for Construction

BibTeX
@article{wang_qiu_hu_chen.2023.IFoMPaMCoU3PC,
  author            = "Yang Wang and Liu-Chao Qiu and Yan-Ye Hu and Song-Gui Cheng and Yi Liu",
  title             = "Influential Factors on Mechanical Properties and Microscopic Characteristics of Underwater 3D Printing Concrete",
  doi               = "10.1016/j.jobe.2023.107571",
  year              = "2023",
  journal           = "Journal of Building Engineering",
  volume            = "77",
  pages             = "107571",
}
Formatted Citation

Y. Wang, L.-C. Qiu, Y.-Y. Hu, S.-G. Cheng and Y. Liu, “Influential Factors on Mechanical Properties and Microscopic Characteristics of Underwater 3D Printing Concrete”, Journal of Building Engineering, vol. 77, p. 107571, 2023, doi: 10.1016/j.jobe.2023.107571.

Wang, Yang, Liu-Chao Qiu, Yan-Ye Hu, Song-Gui Cheng, and Yi Liu. “Influential Factors on Mechanical Properties and Microscopic Characteristics of Underwater 3D Printing Concrete”. Journal of Building Engineering 77 (2023): 107571. https://doi.org/10.1016/j.jobe.2023.107571.