Skip to content

Effects of Incorporating Fine Aggregates and Polypropylene-Micro-Fibers on the Cracking-Control of 3D Printed Cementitious Mixtures (2024-12)

10.3390/buildings15010055

 Vargas Armando,  Robayo-Salazar Rafael,  de Gutiérrez Ruby
Journal Article - Buildings, Vol. 15, Iss. 1, No. 55

Abstract

One of the most significant challenges for 3D printing of construction elements from cementitious materials is the control of cracking caused by various contraction– shrinkage mechanisms, such as drying, chemical, plastic and autogenous shrinkage. This study addresses the effects of incorporating fine aggregates (maximum size ≤ 1.18 mm), both natural and recycled, as well as short (6 mm long) polypropylene (PP) fibres on the control of cracking in cementitious mixtures based on Portland cement. Admixtures and/or mineral additions (modifiers), such as metakaolin, micro-silica, calcium carbonate, and fine powders obtained from construction and demolition wastes were used in the mixtures. Mini-slump, flow rate and buildability tests were used to characterize the mixtures in their fresh state. Extrudability was evaluated using laboratory-scale 3D printing tests conducted with a plunger–piston extrusion system. It was demonstrated that the physical characteristics of the aggregates directly influence the extrusion capacity. Mixtures containing natural aggregates exhibited greater fluidity and lower water demand than those containing recycled aggregates. The results indicated that the maximum allowable volume of fibres was 0.75%. To evaluate the cracking susceptibility of the mixtures, both with and without reinforcement, hollow beams composed of seven layers were printed, and subsequently the elements were exposed to the outdoor natural environment and inspected for a period of 90 days. The inclusion of the PP fibres effectively prevented the occurrence of fissures and/or cracks associated with shrinkage phenomena throughout the inspection period, unlike in unreinforced mixtures, which cracked after 14 days of exposure to the environment.

19 References

  1. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  2. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  3. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  4. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  5. Kim Kwan, Yeon Jaeheum, Lee Hee, Yeon Jung (2019-08)
    Dimensional Stability of SBR-Modified Cementitious Mixtures for Use in 3D Additive Construction
  6. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  7. Manikandan Karthick, Wi Kwangwoo, Zhang Xiao, Wang Kejin et al. (2020-03)
    Characterizing Cement Mixtures for Concrete 3D Printing
  8. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  9. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
    Plastic Shrinkage Cracking in 3D Printed Concrete
  10. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-06)
    Mitigating Early-Age Cracking in 3D Printed Concrete Using Fibers, Superabsorbent Polymers, Shrinkage Reducing Admixtures, B-CSA Cement and Curing Measures
  11. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  12. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  13. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  14. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  15. Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2021-09)
    Shrinkage Behavior of Cementitious 3D Printing Materials:
    Effect of Temperature and Relative Humidity
  16. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
    3D Printed Concrete for Large-Scale Buildings:
    An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects
  17. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  18. Vlieger Jentel, Boehme Luc, Blaakmeer Jan, Li Jiabin (2023-01)
    Buildability-Assessment of Mortar with Fine Recycled Aggregates for 3D Printing
  19. Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
    On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing

3 Citations

  1. Abbas Yassir, Alsaif Abdulaziz (2025-11)
    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete:
    Interpreting Nonlinear Synergies Among Binder Components and Proportions
  2. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  3. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review

BibTeX
@article{varg_roba_guti.2025.EoIFAaPMFotCCo3PCM,
  author            = "Armando Vargas and Rafael Robayo-Salazar and Ruby Mejía de Gutiérrez",
  title             = "Effects of Incorporating Fine Aggregates and Polypropylene-Micro-Fibers on the Cracking-Control of 3D Printed Cementitious Mixtures",
  doi               = "10.3390/buildings15010055",
  year              = "2025",
  journal           = "Buildings",
  volume            = "15",
  number            = "1",
  pages             = "55",
}
Formatted Citation

A. Vargas, R. Robayo-Salazar and R. M. de Gutiérrez, “Effects of Incorporating Fine Aggregates and Polypropylene-Micro-Fibers on the Cracking-Control of 3D Printed Cementitious Mixtures”, Buildings, vol. 15, no. 1, p. 55, 2025, doi: 10.3390/buildings15010055.

Vargas, Armando, Rafael Robayo-Salazar, and Ruby Mejía de Gutiérrez. “Effects of Incorporating Fine Aggregates and Polypropylene-Micro-Fibers on the Cracking-Control of 3D Printed Cementitious Mixtures”. Buildings 15, no. 1 (2025): 55. https://doi.org/10.3390/buildings15010055.