Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials (2019-07)¶
10.21809/rilemtechlett.2019.84
, ,
Journal Article - RILEM Technical Letters, Vol. 4, pp. 33-38
Abstract
The structural capacity of 3D printed components mainly depends on the inter‐layer bonding strength between the different layers. This bond strength is affected by many parameters (e.g. moisture content of the substrate, time gap, surface roughness,..) and any mismatch in properties of the cementitious material may lead to early failure. A common technique to improve inter‐layer bonding strength between a substrate and a newly added layer is modifying the substrate surface. For the purpose of this research, a custom‐made 3D printing apparatus is used to simulate the printing process and layered specimens with a different delay time (0 and 30 minutes) are manufactured with different surface modification techniques (wire brushing, addition of sand or cement and moisturizing substrate layer). The surface roughness was measured and the effect of the modification technique on the inter‐layer‐bonding strength was investigated. Results showed that the most effective way to increase the inter‐layer bonding is increasing the surface roughness by a comb. This creates a kind of interlock system that will provide a higher inter‐layer strength. The compressive strength is most influenced by the addition of cement, where the changing W/C‐ratio will create a higher degree of hydration and consequently a higher strength.
¶
6 References
- Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Zareiyan Babak, Khoshnevis Behrokh (2017-08)
Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete - Zareiyan Babak, Khoshnevis Behrokh (2018-04)
_Effects of Mixture Ingredients on Inter-Layer Adhesion of Concrete in Contour Crafting
70 Citations
- Huang Bo, Liu Chang, Sun Junbo, Wang Yufei et al. (2025-12)
Optimized Synergy of Fiberglass Mesh and PP Fibers-Modified Structural Adhesive for Enhanced Mechanical and Microstructural Performance in 3D Printing Concrete - Rangel Carolina, Salet Theo, Lucas Sandra (2025-12)
A Design Methodology for Sustainable Lightweight 3D-Printable Concrete with SCMs - Oh Sangwoo, Lee Jinsuk, Oh Gyujong, Choi Seongcheol (2025-11)
Effects of the Combined Incorporation of Superabsorbent Polymers and Polyvinyl Alcohol Fibers on Material Properties of 3D Printable Mortar:
Rheology, Shrinkage, and Mechanical Behavior - Haripan Vislavath, Senthilnathan Shanmugaraj, Santhanam Manu, Raphael Benny (2025-10)
Printability Assessment of Concrete 3D Printed Elements with Recycled Fine Aggregate - Simwanda Lenganji, David Abayomi, Gatheeshgar Perampalam, Olalusi Oladimeji et al. (2025-10)
Optimisation of Interlayer Bond Strength in 3D-Printed Concrete Using Response Surface Methodology and Artificial Neural Networks - Maroszek Marcin, Hager Izabela, Mróz Katarzyna, Sitarz Mateusz et al. (2025-08)
Anisotropy of Mechanical Properties of 3D-Printed Materials:
Influence of Application Time of Subsequent Layers - Mostert Jean-Pierre, Kruger Jacques (2025-07)
Reducing Anisotropic Behaviour of 3D Printed Concrete Through Interlocked Filaments - Tao Yaxin, Wang Li, Wangler Timothy, Lesage Karel et al. (2025-05)
A (P)Review:
Adhesion of Printcrete for Tunnel Structures - Munemo Rue, Kruger Jacques, Zijl Gideon (2025-05)
Surface Treatment of 3DPC Interlayers with Silicate-Based Solution for Enhanced Interfacial Bonding - Tang Boyang, Yan Jiachuan, Han Xiaoyu, Lin Yini et al. (2025-05)
Mechanical Properties of Extrusion-Based 3D-Printed Concrete Considering the Thickness of the Printed Layer and Printing Time Interval - Lucen Hao, Hanxiong Lyu, Huanghua Zhang, Shipeng Zhang et al. (2025-05)
Development of CO2-Activated Interface Enhancer to Improve the Interlayer Properties of 3D-Printed Concrete - Luo Xiaoyu, Zhao Yuqi, Yao Xiaofei, Zou Cunjun et al. (2025-05)
3D Printing Concrete Interface Treatment Based on Physical and Chemical Methods:
A Review - Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
From Printing to Performance:
A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment - Chai Hwa, Shiotani Tomoki (2025-03)
Opening Letter of RILEM TC QPA:
Quality and Performance Assurance of Additively Manufactured Cementitious Composites by Advanced Non-Invasive Techniques - Jiang Youbau, Liu Yan, Zhang Zupan, Gao Pengxiang et al. (2025-03)
Tensile Performance of Interlayer Interface of Interlocking 3D Printed Concrete with Single Toothlike Nozzle - Perrot Arnaud, Jacquet Yohan (2025-01)
3D Concrete Printing by Extrusion and Filament-Deposition - Hassan Amer, Alomayri Thamer, Noaman Mohammed, Zhang Chunwei (2025-01)
3D Printed Concrete for Sustainable Construction:
A Review of Mechanical Properties and Environmental Impact - Schossler Rodrigo, Ullah Shafi, Alajlan Zaid, Yu Xiong (2025-01)
Data-Driven Analysis in 3D Concrete Printing:
Predicting and Optimizing Construction Mixtures - Jiang Youbau, Gao Pengxiang, Adhikari Sondipon, Yao Xiaofei et al. (2024-12)
Studies on the Mechanical Properties of Inter-Layer Interlocking 3D Printed Concrete Based on a Novel Nozzle - Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
From Local Earth to Modern Structures:
A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction - Li L., Fang Z., Chu S., Kwan Albert (2024-11)
Improving Mechanical Properties of 3D Printed Mortar by Exploiting Synergistic Effects of Fly-Ash-Microsphere and Nano-Silica - Wang Bolin, Yang Min, Liu Shilong, Liu Xianda et al. (2024-10)
Research on Mechanical Properties of a 3D Concrete Printing Component-Optimized Path by Multi-Modal Analysis - Gao Jianhao, Wang Chaofeng, Li Jiaqi, Chu S. (2024-09)
Data-Driven Rheological-Model for 3D Printable Concrete - Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements - Lee Yoon, Lee Sang, Kim Jae, Jeong Hoseong et al. (2024-07)
Inter-Layer Bond Strength of 3D Printed Concrete Members with Ultra-High-Performance Concrete Mix - Stout Ivy, Godfrey Grant, Dayley Jenna, Rodriguez Dexter et al. (2024-05)
Concrete Mixture Properties and Designs for Additive Manufacturing:
A Review of 3D Concrete Printing - Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2024-04)
Mitigation of Lack-of-Fusion in 3D Printed Limestone-Calcined-Clay-Cement Concrete Induced by Effective Micro-Organisms - Silveira Júnior Jairon, Moura Cerqueira Kevin, Moura Ruan, Matos Paulo et al. (2024-04)
Influence of Time-Gap on the Buildability of Cement Mixtures Designed for 3D Printing - Şahin Hatice, Mardani Ali (2023-10)
How Does Rheological Behavior Affect the Inter-Layer Bonding Strength of 3DPC Mixtures? - Wang Yang, Qiu Liu-Chao, Hu Yan-Ye, Cheng Song-Gui et al. (2023-08)
Influential Factors on Mechanical Properties and Microscopic Characteristics of Underwater 3D Printing Concrete - Zhou Wen, McGee Wesley, Gökçe H., Li Victor (2023-08)
A Bio-Inspired Solution to Alleviate Anisotropy of 3D Printed Engineered Cementitious Composites (3DP-ECC):
Knitting/Tilting Filaments - Cao Xiangpeng, Yu Shiheng, Cui Hongzhi (2023-08)
Experimental Study of the In-Situ Rebar-Splicing-Technique to Reinforce 3D Printed Concrete in Vertical Directions - Arrêteau Manon, Fabien Aurélie, Haddaji Badreddine, Chateigner Daniel et al. (2023-07)
Review of Advances in 3D Printing Technology of Cementitious Materials:
Key Printing Parameters and Properties Characterization - Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials - Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
A Detailed Review - Ungureanu Dragoș, Onuțu Cătălin, Isopescu Dorina, Țăranu Nicolae et al. (2023-06)
A Novel Approach for 3D Printing Fiber-Reinforced Mortars - Noaimat Yazeed, Chougan Mehdi, Kheetan Mazen, Mandhari Othman et al. (2023-04)
3D Printing of Limestone-Calcined-Clay-Cement:
A Review of Its Potential Implementation in the Construction-Industry - Chen Hao, Zhang Daobo, Chen Peng, Li Ning et al. (2023-03)
A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing - Chen Yanjuan, Kuva Jukka, Mohite Ashish, Li Zhongsen et al. (2023-03)
Investigation of the Internal Structure of Hardened 3D Printed Concrete by X-CT Scanning and Its Influence on the Mechanical Performance - Luo Surong, Lin Qian, Xu Wei, Wang Dehui (2023-03)
Effects of Interval Time and Interfacial Agents on the Mechanical Characteristics of Ultra-High-Toughness Cementitious Composites Under 3D Printed Technology - Tao Yaxin, Ren Qiang, Vantyghem Gieljan, Lesage Karel et al. (2023-02)
Extending 3D Concrete Printing to Hard Rock Tunnel Linings:
Adhesion of Fresh Cementitious Materials for Different Surface Inclinations - Cao Xiangpeng, Yu Shiheng, Wu Shuoli, Cui Hongzhi (2022-11)
Experimental Study of Hybrid Manufacture of Printing and Cast-in-Process to Reinforce 3D Printed Concrete - Sun Bochao, Zeng Qiang, Wang Dianchao, Zhao Weijian (2022-10)
Sustainable 3D Printed Mortar with CO2 Pretreated Recycled Fine Aggregates - Pham Thi, Nguyen Thu, Trinh Thanh, Nguyen Anh et al. (2022-08)
Development of 3D Printers for Concrete Structures:
Mix Proportion Design Approach and Laboratory Testing - Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar? - Hager Izabela, Maroszek Marcin, Mróz Katarzyna, Kęsek Rafał et al. (2022-06)
Inter-Layer Bond Strength Testing in 3D Printed Mineral Materials for Construction Applications - Cao Xiangpeng, Yu Shiheng, Zheng Dapeng, Cui Hongzhi (2022-06)
Nail-Planting to Enhance the Interface Bonding Strength in 3D Printed Concrete - Danish Aamar, Khurshid Kiran, Mosaberpanah Mohammad, Ozbakkaloglu Togay et al. (2022-06)
Micro-Structural Characterization, Driving Mechanisms, and Improvement-Strategies for Inter-Layer Bond Strength of Additive Manufactured Cementitious Composites:
A Review - Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
A Review - Marchment Taylor, Sanjayan Jay (2022-04)
Lap Joint Reinforcement for 3D Concrete Printing - Cao Xiangpeng, Yu Shiheng, Cui Hongzhi (2022-02)
Experimental Investigation on Inner- and Inter-Strip Reinforcements for 3D Printed Concrete via Automatic Staple Inserting Technique - Putten Jolien, Nerella Venkatesh, Mechtcherine Viktor, Hondt Mélody et al. (2022-01)
Properties and Testing of Printed Cement-Based Materials in Hardened State - Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
3D Printable Alkali-Activated Concretes for Building Applications:
A Critical Review - Şahin Hatice, Mardani Ali (2021-12)
Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
A State of the Art Review - Tao Yaxin, Lesage Karel, Tittelboom Kim, Yuan Yong et al. (2021-11)
Influence of Substrate-Surface-Roughness and Moisture-Content on Tensile Adhesion Performance of 3D Printable Concrete - Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing - Rodriguez Fabian, Olek Jan, Moini Mohamadreza, Zavattieri Pablo et al. (2021-11)
Linking Solids Content and Flow Properties of Mortars to Their Three-Dimensional Printing Characteristics - Han Xiaoyu, Yan Jiachuan, Liu Mingjian, Huo Liang et al. (2021-10)
Experimental Study on Large-Scale 3D Printed Concrete Walls Under Axial Compression - Wolfs Robert, Salet Theo, Roussel Nicolas (2021-10)
Filament-Geometry-Control in Extrusion-Based Additive Manufacturing of Concrete:
The Good, the Bad and the Ugly - Bedarf Patrick, Dutto Alessandro, Zanini Michele, Dillenburger Benjamin (2021-08)
Foam 3D Printing for Construction:
A Review of Applications, Materials, and Processes - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
Possibilities and Challenges - Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography - Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
Improving Performance of Additive Manufactured Concrete:
A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods - Putten Jolien, Snoeck Didier, Coensel R., Schutter Geert et al. (2020-12)
Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Kruger Jacques, Zijl Gideon (2020-10)
A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication - Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
An Experimental and Numerical Study - Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures - Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
Nailing of Layers:
A Promising Way to Reinforce Concrete 3D Printing Structures
BibTeX
@article{putt_schu_titt.2019.SMaaTtIILBSi3PCM,
author = "Jolien van der Putten and Geert de Schutter and Kim van Tittelboom",
title = "Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials",
doi = "10.21809/rilemtechlett.2019.84",
year = "2019",
journal = "RILEM Technical Letters",
volume = "4",
pages = "33--38",
}
Formatted Citation
J. van der Putten, G. de Schutter and K. van Tittelboom, “Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials”, RILEM Technical Letters, vol. 4, pp. 33–38, 2019, doi: 10.21809/rilemtechlett.2019.84.
Putten, Jolien van der, Geert de Schutter, and Kim van Tittelboom. “Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials”. RILEM Technical Letters 4 (2019): 33–38. https://doi.org/10.21809/rilemtechlett.2019.84.