3D Printing Concrete Interface Treatment Based on Physical and Chemical Methods (2025-05)¶
, , Yao Xiaofei, Zou Cunjun, Hu Jiawei, Shi Hao
Contribution - Application and Development of Data Simulation and Mechanical Analysis in Civil Engineering, pp. 496-506
Abstract
3D concrete printing technology (3DCP) represents a significant advancement in the construction industry. However, the production process often encounters interface issues, which may arise between layers, strips, or between the 3D printing template and the post-cast concrete. The inadequate performance of these interfaces is a central challenge in 3DCP components. This paper analyses the formation mechanisms and existing problems of these three interfaces, focusing on the improvement of the interface performance using both physical and chemical means in the existing research. Physical methods include altering interface roughness and designing macro-interlocking features, while chemical methods involve the application of cement-based and polymer interfacial agents. This paper aims to provide researchers with a comprehensive understanding of these two critical approaches for improving 3DCP component interfaces and to propose more advanced enhancement strategies to facilitate the further development of the 3DCP industry.
¶
51 References
- Abbaoui Khalid, Korachi Issam, Jai Mostapha, Šeta Berin et al. (2024-04)
3D Concrete Printing Using Computational Fluid Dynamics:
Modeling of Material-Extrusion with Slip-Boundaries - Bekaert Michiel, Tittelboom Kim, Schutter Geert (2024-07)
Influence of Curing Conditions on the Shrinkage Behavior of Three-Dimensional Printed Concrete Formwork - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography - Chen Yidong, Zhang Yunsheng, Liu Zhiyong, Zhang Wenhua et al. (2024-03)
Quantitative Surface Quality Evaluation for 3D Printed Concrete with Coarse Aggregate Through 3D Scanning - Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics - Danish Aamar, Khurshid Kiran, Mosaberpanah Mohammad, Ozbakkaloglu Togay et al. (2022-06)
Micro-Structural Characterization, Driving Mechanisms, and Improvement-Strategies for Inter-Layer Bond Strength of Additive Manufactured Cementitious Composites:
A Review - Farahbakhsh Mehdi, Rybkowski Zofia, Zakira Umme, Kalantar Negar et al. (2022-07)
Impact of Robotic 3D Printing Process Parameters on Inter-Layer Bond Strength - He Lewei, Li Hua, Chow Wai, Zeng Biqing et al. (2022-09)
Increasing the Inter-Layer Strength of 3D Printed Concrete with Tooth-Like Interface:
An Experimental and Theoretical Investigation - He Lewei, Tan Jolyn, Chow Wai, Li Hua et al. (2021-11)
Design of Novel Nozzles for Higher Inter-Layer Strength of 3D Printed Cement-Paste - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
An Experimental and Computational Investigation - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Zaker Zafar et al. (2020-06)
Orbital Overlapping Through Induction Bonding Overcomes the Intrinsic Delamination of 3D Printed Cementitious Binders - Hua Tianran, Lin Alexander, Poh Wen, Wong De et al. (2023-06)
3D Printed Concrete Shear Keys:
Design and Experimental Study - Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
3D Printing Concrete with Recycled Coarse Aggregates:
The Influence of Pore-Structure on Inter-Layer Adhesion - Liu Junli, Tran Jonathan, Nguyen Vuong, Gunasekara Chamila et al. (2023-06)
3D Printing of Cementitious Mortar with Milled Recycled Carbon-Fibers:
Influences of Filament Offset on Mechanical Properties - Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete - Luo Surong, Lin Qian, Xu Wei, Wang Dehui (2023-03)
Effects of Interval Time and Interfacial Agents on the Mechanical Characteristics of Ultra-High-Toughness Cementitious Composites Under 3D Printed Technology - Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
Technology Readiness:
A Global Snapshot of 3D Concrete Printing and the Frontiers for Development - Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Moini Mohamadreza, Baghaie Ahmadreza, Rodriguez Fabian, Zavattieri Pablo et al. (2021-06)
Quantitative Microstructural Investigation of 3D Printed and Cast Cement-Pastes Using Micro-Computed Tomography- and Image-Analysis - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
Microstructural Characterization of 3D Printed Cementitious Materials - Putten Jolien, Schutter Geert, Tittelboom Kim (2019-07)
Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials - Qiu Minghong, Sun Yan, Qian Ye (2023-12)
Interfacial Bonding Performance of 3D Printed Ultra-High-Performance Strain-Hardening Cementitious Composites and Cast Normal Concrete - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Sun Bochao, Li Peichen, Wang Dianchao, Ye Jun et al. (2023-03)
Evaluation of Mechanical Properties and Anisotropy of 3D Printed Concrete at Different Temperatures - Sun Chang, Zhao Haiye, Liu Qiong, Pan Feng (2024-04)
Shear Behavior of 3DPM-NM Specimens with Different Interfacial Locking Designs - Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
Mechanical Properties and Durability - Teng Fei, Ye Junhong, Yu Jie, Li Heng et al. (2024-07)
Development of Strain-Hardening Cementitious Composites (SHCC) As Bonding Materials to Enhance Inter-Layer and Flexural Performance of 3D Printed Concrete - Vespalec Arnošt, Novák Josef, Kohoutková Alena, Vosynek Petr et al. (2020-11)
Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing - Wang Ziyue, Chen Zixuan, Xiao Jianzhuang, Ding Tao (2023-03)
Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar - Wang Li, Liu Yi, Yang Yu, Li Yanfeng et al. (2021-04)
Bonding Performance of 3D Printing Concrete with Self-Locking Interfaces Exposed to Compression-Shear and Compression-Splitting Stresses - Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails - Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
Experiments and Molecular Dynamics Studies - Wang Li, Yang Yu, Yao Liang, Ma Guowei (2022-02)
Interfacial Bonding Properties of 3D Printed Permanent Formwork with the Post-Casted Concrete - Weng Yiwei, Li Mingyang, Wong Teck, Tan Ming (2021-01)
Synchronized Concrete and Bonding-Agent-Deposition-System for Inter-Layer Bond Strength Enhancement in 3D Concrete Printing - Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure - Yan Yufei, Zhang Mo, Ma Guowei, Sanjayan Jay (2024-05)
Enhancing Inter-Layer Bonding Strength of 3D Printed Ternary Geopolymer Using Calcium-Carbonate-Whiskers Spray - Yu Qian, Zuo Qinxin, Zhang Yamei, Pan Jinlong (2024-08)
An Investigation on Enhancing the Bonding Properties of 3D Printed Concrete Permanent Formwork and Post-Casted Concrete - Zareiyan Babak, Khoshnevis Behrokh (2017-08)
Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review - Zhang Yu, Qiao Hongxia, Qian Rusheng, Xue Cuizhen et al. (2022-02)
Relationship Between Water-Transport Behavior and Inter-Layer Voids of 3D Printed Concrete - Zhang Yu, Yang Lin, Qian Rusheng, Liu Guojian et al. (2023-07)
Inter-Layer Adhesion of 3D Printed Concrete:
Influence of Layer Stacked Vertically
BibTeX
@inproceedings{luo_zhao_yao_zou.2025.3PCITBoPaCM,
author = "Xiaoyu Luo and Yuqi Zhao and Xiaofei Yao and Cunjun Zou and Jiawei Hu and Hao Shi",
title = "3D Printing Concrete Interface Treatment Based on Physical and Chemical Methods: A Review",
doi = "10.1007/978-3-031-87959-3_42",
year = "2025",
pages = "496--506",
booktitle = "Application and Development of Data Simulation and Mechanical Analysis in Civil Engineering",
}
Formatted Citation
X. Luo, Y. Zhao, X. Yao, C. Zou, J. Hu and H. Shi, “3D Printing Concrete Interface Treatment Based on Physical and Chemical Methods: A Review”, in Application and Development of Data Simulation and Mechanical Analysis in Civil Engineering, 2025, pp. 496–506. doi: 10.1007/978-3-031-87959-3_42.
Luo, Xiaoyu, Yuqi Zhao, Xiaofei Yao, Cunjun Zou, Jiawei Hu, and Hao Shi. “3D Printing Concrete Interface Treatment Based on Physical and Chemical Methods: A Review”. In Application and Development of Data Simulation and Mechanical Analysis in Civil Engineering, 496–506, 2025. https://doi.org/10.1007/978-3-031-87959-3_42.