Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete (2022-01)¶
10.1016/j.compositesb.2022.109619
, Xiong Yuanliang, , Jia Lutao, Ma Lei, Deng Zhicong, Wang Zhibin, Chen Chun, ,
Journal Article - Composites Part B: Engineering, Vol. 232
Abstract
Generally, we expect that cement-based materials for 3D printing can quickly obtain sufficient strength after extrusion to resist the pressure generated by the stacking layers to achieve good buildability. In this study, sulphoaluminate cement (SAC) was used to improve the printability of fresh foamed concrete (FC). The effects of different SAC contents on the foam stability, open time, and buildability of fresh FC, the interlayer interface, and porosity and mechanical anisotropy of hardened 3D printed FC (3DPFC) were investigated. The addition of SAC reduces the settlement of fresh FC and prevents defoaming by promoting the hydration process to accelerate the formation of pore structure. In addition, SAC reduces the bubble diameter of the fresh FC, which is attributed to the enhancement of yield stress of the mortar before doping foam. Meanwhile, the buildability of 3DPFC is improved, while the open time is reduced with the addition of SAC. The printability of the 3DPFC can be predicted based on the remaining height of the FC from cylinder test and the flow diameter from jumping table test. When the remaining height is 74–80 mm, and the flow diameter is between 155 and 176 mm, the extrudability and buildability of the 3DPFC can be guaranteed simultaneously. With an increase in SAC content, the width of the interface area and the interface porosity of the 3DPFC increase, leading to the intensification of mechanical anisotropy. We suggest that the SAC content for 3DPFC should not exceed 10%.
¶
28 References
- Alghamdi Hussam, Neithalath Narayanan (2019-07)
Synthesis and Characterization of 3D Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite - Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up - Cho Seung, Kruger Jacques, Rooyen Algurnon, Zijl Gideon (2021-03)
Rheology and Application of Buoyant Foam-Concrete for Digital Fabrication - Falliano Devid, Domenico Dario, Ricciardi Giuseppe, Gugliandolo Ernesto (2020-04)
3D Printable Lightweight Foamed Concrete and Comparison with Classical Foamed Concrete in Terms of Fresh State Properties and Mechanical Strength - Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
Layer-Interface Properties in 3D Printed Concrete:
Dual Hierarchical Structure and Micromechanical Characterization - Liu Zhixin, Li Mingyang, Weng Yiwei, Qian Ye et al. (2020-03)
Modelling- and Parameter-Optimization for Filament-Deformation in 3D Cementitious Material-Printing Using Support-Vector-Machine - Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Manikandan Karthick, Wi Kwangwoo, Zhang Xiao, Wang Kejin et al. (2020-03)
Characterizing Cement Mixtures for Concrete 3D Printing - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Markin Slava, Nerella Venkatesh, Schröfl Christof, Guseynova Gyunay et al. (2019-07)
Material-Design and Performance-Evaluation of Foam-Concrete for Digital Fabrication - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
Large-Scale Digital Concrete Construction:
CONPrint3D Concept for On-Site, Monolithic 3D Printing - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Perkins Isaac, Skitmore Martin (2015-03)
Three-Dimensional Printing in the Construction Industry:
A Review - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
Correction - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar - Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink
46 Citations
- Abid Khasim, Syed Sajid, Khan Majid (2025-08)
Explainable Machine Learning-Based Model for Predicting Interlayer Bond Strength in 3D Printed Concrete - Sakhare Vishakha, Khairnar Neha, Dahatonde Ulka, Mashalkar Shilpa (2025-06)
Review on Sustainability in 3D Concrete Printing:
Focus on Waste Utilization and Life Cycle Assessment - Dai Pengfei, Luo Zhenhua, Wang Yalun, Mbabazi Justin et al. (2025-06)
Waste Plastic Fiber Reinforced Cementitious Cavity Structures Manufactured by Mortar Extrusion 3D Printing - Su Yanli, Wu Chang, Shang Jiaqi, Zhang Pu (2025-06)
Mechanical Properties of 3D-Printed High-Ductility Cementitious Composite with Sulphoaluminate Cement and Modified Crumb Rubber - Geng Songyuan, Cheng Boyuan, Long Wujian, Luo Qiling et al. (2025-05)
Co-Driven Physics and Machine Learning for Intelligent Control in High-Precision 3D Concrete Printing - Sun Yuhang, Wang Haonan, Zhang Yi, Liu Xiongfei et al. (2025-05)
Spray-Based 3D Printed Foam Concrete:
Stress Concentration Relieve Utilization - Lucen Hao, Hanxiong Lyu, Huanghua Zhang, Shipeng Zhang et al. (2025-05)
Development of CO2-Activated Interface Enhancer to Improve the Interlayer Properties of 3D-Printed Concrete - Zhang Yuying, Zhu Xiaohong, Li Muduo, Zhang Chao et al. (2025-04)
3D Printing Technology in Concrete Construction - Jiang Yu, Zhang Qingxin, Tabbaa Abir, Daly Ronan (2025-03)
The Critical Role of Time-Dependent Rheology for Improved Quality Control of 3D Printed Cementitious Structures - Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
Comprehensive Review of Binder Matrices in 3D Printing Construction:
Rheological Perspectives - Yang Yekai, Zhang Chiyu, Liu Zhongxian, Dong Liang et al. (2024-10)
Effect of Hydration Process on the Inter-Layer Bond Tensile Mechanical Properties of Ultra-High-Performance Concrete for 3D Printing - Liu Xiongfei, Cai Huachong, Sun Yuhang, Wang Li et al. (2024-08)
Spray-Based 3D Printed Foam-Concrete:
Cooperative Optimization for Lightweight and High-Strength Performance - Zhang Kaijian, Lin Wenqiang, Zhang Qingtian, Wang Dehui et al. (2024-07)
Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete - Liu Chao, Zhang Zedi, Jia Zijian, Cao Ruilin et al. (2024-07)
Quantitative Characterization of Bubble-Stability of Foam-Concrete Throughout Extrusion-Process:
From Yield-Stress , Viscosity and Surface Tension Point of View - Teng Fei, Ye Junhong, Yu Jie, Li Heng et al. (2024-07)
Development of Strain-Hardening Cementitious Composites (SHCC) As Bonding Materials to Enhance Inter-Layer and Flexural Performance of 3D Printed Concrete - Parmigiani Silvia, Falliano Devid, Moro Sandro, Ferro Giuseppe et al. (2024-06)
3D Printed Multi-Functional Foamed Concrete Building Components:
Material-Properties, Component Design, and 3D Printing Application - Gao Huaxing, Jin Lang, Chen Yuxuan, Chen Qian et al. (2024-05)
Rheological Behavior of 3D Printed Concrete:
Influential Factors and Printability Prediction Scheme - Lyu Qifeng, Wang Yalun, Dai Pengfei (2024-05)
Multilayered Plant-Growing Concrete Manufactured by Aggregate-Bed 3D Concrete Printing - Chen Anguo, Dai Pengfei, Lyu Qifeng (2024-05)
Effect of Alkalized Straw-Fibers on the Properties of Three Dimensional Printed Cementitious Composite - Boddepalli Uday, Gandhi Indu, Panda Biranchi (2024-05)
Synergistic Effect of Fly-Ash and Polyvinyl-Alcohol-Fibers in Improving Stability, Rheology, and Mechanical Properties of 3D Printable Foam-Concrete - Sun Bochao, Dominicus Randy, Dong Enlai, Li Peichen et al. (2024-04)
Predicting the Strength Development of 3D Printed Concrete Considering the Synergistic Effect of Curing-Temperature and Humidity:
From Perspective of Modified Maturity-Model - Geng Songyuan, Mei Liu, Cheng Boyuan, Luo Qilong et al. (2024-03)
Revolutionizing 3D Concrete Printing:
Leveraging Random-Forest-Model for Precise Printability and Rheological Prediction - Chen Mingxu, Xu Jiabin, Yuan Lianwang, Zhao Piqi et al. (2024-03)
Use of Creep and Recovery-Protocol to Assess the Printability of Fiber-Reinforced 3D Printed White-Portland-Cement Composites - Niu Geng, Liu Chao, Jia Lutao, Ma Lei et al. (2024-03)
Preparation and Performance-Analysis of 3D Printed Lightweight EPS-Concrete:
Insights from the Excess-Paste-Theory - Wu Dinglue, Luo Qiling, Long Wujian, Zhang Shunxian et al. (2024-02)
Advancing Construction 3D Printing with Predictive Inter-Layer Bonding Strength:
A Stacking Model Paradigm - Geng Songyuan, Luo Qiling, Cheng Boyuan, Li Lixao et al. (2024-02)
Intelligent Multi-Objective Optimization of 3D Printing Low-Carbon Concrete for Multi-Scenario Requirements - Prem Prabhat, Ambily Parukutty, Kumar Shankar, Ghodke Swapnil (2024-01)
A Theoretical Model to Predict the Structural Buildability of 3D Printable Concrete - Dai Pengfei, Lyu Qifeng, Zong Meirong, Zhu Pinghua (2024-01)
Effect of Waste-Plastic-Fibers on the Printability and Mechanical Properties of 3D Printed Cement Mortar - Lucen Hao, Long Li, Shipeng Zhang, Huanghua Zhang et al. (2023-12)
The Synergistic Effect of Greenhouse Gas CO2 and Silica-Fume on the Properties of 3D Printed Mortar - Warsi Syed, Srinivas Dodda, Panda Biranchi, Biswas Pankaj (2023-12)
Investigating the Impact of Coarse Aggregate Dosage on the Mechanical Performance of 3D Printable Concrete - Gao Huaxing, Chen Yuxuan, Chen Qian, Yu Qingliang (2023-11)
Thermal and Mechanical Performance of 3D Printing Functionally Graded Concrete:
The Role of SAC on the Rheology and Phase Evolution of 3DPC - Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-10)
Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers - Chen Yuning, Xia Kailun, Jia Zijian, Gao Yueyi et al. (2023-10)
Extending Applicability of 3D Printable Geopolymer to Large-Scale Printing Scenario via Combination of Sodium Carbonate and Nano-Silica - Lyu Qifeng, Dai Pengfei, Zong Meirong, Zhu Pinghua et al. (2023-10)
Plant-Germination Ability and Mechanical Strength of 3D Printed Vegetation Concrete Bound with Cement and Soil - Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete - Geng Songyuan, Long Wujian, Luo Qiling, Fu Junen et al. (2023-07)
Intelligent Prediction of Dynamic Yield-Stress in 3D Printing Concrete Based on Machine Learning - Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-05)
Sandwich-Structured Porous Concrete Manufactured by Mortar-Extrusion and Aggregate-Bed 3D Printing - Liu Chao, Zhang Yamei, Banthia Nemkumar (2023-05)
Unveiling Pore Formation and Its Influence on Micromechanical Property and Stress-Distribution of 3D Printed Foam-Concrete Modified with Hydroxypropyl-Methylcellulose and Silica-Fume - Chen Yanjuan, Kuva Jukka, Mohite Ashish, Li Zhongsen et al. (2023-03)
Investigation of the Internal Structure of Hardened 3D Printed Concrete by X-CT Scanning and Its Influence on the Mechanical Performance - Peng Yiming, Unluer Cise (2022-12)
Development of Alternative Cementitious Binders for 3D Printing Applications:
A Critical Review of Progress, Advantages and Challenges - Deng Zhicong, Jia Zijian, Zhang Chao, Wang Zhibin et al. (2022-10)
3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method:
Printability, Mechanical Properties and Pore-Structure - Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
3D Printed Geopolymer Composites:
A Review - Liu Chao, Chen Yuning, Zhang Zedi, Niu Geng et al. (2022-10)
Study of the Influence of Sand on Rheological Properties, Bubble Features and Buildability of Fresh Foamed Concrete for 3D Printing - Chen Yuning, Zhang Yamei, Xie Yudong, Zhang Zedi et al. (2022-09)
Unraveling Pore-Structure Alternations in 3D Printed Geopolymer Concrete and Corresponding Impacts on Macro-Properties - Liu Chao, Chen Yuning, Xiong Yuanliang, Jia Lutao et al. (2022-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Buildability of 3D Printing Foam-Concrete:
From Water State and Flocculation Point of View - Zhao Zhihui, Chen Mingxu, Jin Yuan, Lu Lingchao et al. (2022-05)
Rheology-Control Towards 3D Printed Magnesium-Potassium-Phosphate-Cement Composites
BibTeX
@article{liu_xion_chen_jia.2022.EoSCoFaHPo3PFC,
author = "Chao Liu and Yuanliang Xiong and Yuning Chen and Lutao Jia and Lei Ma and Zhicong Deng and Zhibin Wang and Chun Chen and Nemkumar Banthia and Yamei Zhang",
title = "Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete",
doi = "10.1016/j.compositesb.2022.109619",
year = "2022",
journal = "Composites Part B: Engineering",
volume = "232",
}
Formatted Citation
C. Liu, “Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete”, Composites Part B: Engineering, vol. 232, 2022, doi: 10.1016/j.compositesb.2022.109619.
Liu, Chao, Yuanliang Xiong, Yuning Chen, Lutao Jia, Lei Ma, Zhicong Deng, Zhibin Wang, Chun Chen, Nemkumar Banthia, and Yamei Zhang. “Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete”. Composites Part B: Engineering 232 (2022). https://doi.org/10.1016/j.compositesb.2022.109619.