Skip to content

The “Slugs-Test” for Extrusion-Based Additive Manufacturing (2021-05)

Protocol, Analysis and Practical Limits

10.1016/j.cemconcomp.2021.104074

 Ducoulombier Nicolas,  Mesnil Romain, Carneau Paul,  Demont Léo,  Bessaies-Bey Hela,  Caron Jean-François,  Roussel Nicolas
Journal Article - Cement and Concrete Composites, Vol. 121

Abstract

This paper introduces a novel rheological technique allowing for the assessment of printable materials yield stress at nozzle exit in the case of extrusion-based 3D printing. This technique is derived from the analysis of the specific gravity-induced non-Newtonian flow that takes place at nozzle exit, which is at the origin of the formation of material drops or so-called slugs. A simple connected balance located below the nozzle gives access to the slugs mass distribution, the average value and the variability of which allow for the computation of the yield stress and, in parallel, for the assessment of the material homogeneity. In this paper, this method is first experimentally validated on simple materials in simple extruders before it is applied to a real printing system. The equations allowing for the yield stress computation are derived. The accuracy of the technique and its range of applicability are discussed

12 References

  1. Bessaies-Bey Hela, Baumann Robert, Schmitz Marc, Radler Michael et al. (2015-05)
    Effect of Polyacrylamide on Rheology of Fresh Cement-Pastes
  2. Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
    A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete
  3. Carneau Paul, Mesnil Romain, Ducoulombier Nicolas, Roussel Nicolas et al. (2020-07)
    Characterisation of the Layer-Pressing-Strategy for Concrete 3D Printing
  4. Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2020-04)
    Additive Manufacturing of Cantilever:
    From Masonry to Concrete 3D Printing
  5. Demont Léo, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2021-01)
    Flow-Based Pultrusion of Continuous Fibers for Cement-Based Composite Material and Additive Manufacturing:
    Rheological and Technological Requirements
  6. Ducoulombier Nicolas, Carneau Paul, Mesnil Romain, Demont Léo et al. (2020-07)
    The Slug-Test:
    In-Line-Assessment of Yield-Stress for Extrusion-Based Additive Manufacturing
  7. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  8. Jacquet Yohan, Picandet Vincent, Rangeard Damien, Perrot Arnaud (2020-07)
    Gravity-Driven Tests to Assess Mechanical Properties of Printable Cement-Based Materials at Fresh State
  9. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  10. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  11. Wolfs Robert, Bos Freek, Salet Theo (2018-06)
    Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete
  12. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing

62 Citations

  1. Caneda-Martínez Laura, Hassan M., Demont Léo, Keita Emmanuel et al. (2026-01)
    Fast Penetration Testing of Printable Concretes with a Portable Device:
    Robustness and Calibration
  2. Costa Gabriel, Maas Pyetra, Doerner Gabriel, Nazário Samara et al. (2026-01)
    Reducing the Cement Content in 3D Concrete Printing Mixtures Through Porcelain Polishing Residue Incorporation
  3. Deetman Arjen, Bos Derk, Lucas Sandra, Salet Theo et al. (2025-12)
    A Database Framework for 3D Concrete Printing
  4. Haripan Vislavath, Senthilnathan Shanmugaraj, Santhanam Manu, Raphael Benny (2025-10)
    Printability Assessment of Concrete 3D Printed Elements with Recycled Fine Aggregate
  5. Barry Mamadou, Jacquet Yohan, Perrot Arnaud (2025-10)
    Pocket Vane and Penetrometer as Quality Control Tool for Extrusion 3D Concrete Printing
  6. Paritala Spandana, Raj Shubham, Singh Prashant, Subramaniam Kolluru (2025-09)
    Designing 3D Printable Concrete by Integrating the Influence of Aggregate Characteristics
  7. Safanelli Nicollas, Schackow Adilson, Effting Carmeane, Matos Paulo (2025-09)
    The Effect of Crystalline Nanocellulose on the Rheology, Hydration of Cement Pastes, and Buildability of 3D-Printed Concrete
  8. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review
  9. Harbouz Ilhame, Yahia Ammar, Rozière Emmanuel, Loukili Ahmed (2025-07)
    Squeeze Test:
    A Toolkit for Assessing the Printability of Stiff Cement-Based Materials.
  10. Rizzieri Giacomo, Meni Simone, Cremonesi Massimiliano, Ferrara Liberato (2025-07)
    A Particle Finite Element Method for Investigating the Influence of Material and Process Parameters in 3D Concrete Printing
  11. Sando Mona, Stephan Dietmar (2025-07)
    Online Monitoring for 3D Printable Geopolymers:
    Automated Slug Test Analysis with Image Analysis Revealing Mixing Sequence Effects
  12. Pierre Maxime, Ghabezloo Siavash, Dangla Patrick, Mesnil Romain et al. (2025-06)
    Multiphysics Modelling of 3D Concrete Printing:
    From Material Model to Process Simulation and Optimisation
  13. Versteege Jelle, Wolfs Robert, Salet Theo (2025-06)
    Data-Driven Additive Manufacturing with Concrete - Enhancing In-Line Sensory Data with Domain Knowledge:
    Part II: Moisture and Heat
  14. Miranda Luiza, Lesage Karel, Schutter Geert, Roussel Nicolas (2025-06)
    Concrete Printing Through Lace Pressing:
    Head, Shoulders, Knees and Toes
  15. Sbardelotto Eduardo, Vieira Manuel, Ferreira dos Santos Karyne, Pereira dos Santos Samuel et al. (2025-06)
    Exploratory Study on the Rheological Behaviour of 3D Printable Mortars Incorporating Fine Recycled Concrete Aggregates (FRCA)
  16. Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing
  17. Kim Tae, Oh Sangwoo, Lee Jinsuk, Dong Won-Jun et al. (2025-05)
    Effects of 3D-Printed Concrete Permanent Formwork on the Flexural Behavior of Reinforced Concrete Beams:
    Experimental and Analytical Investigations
  18. Liu Xingzi, Xu Jie, Dobrzanski James, Kolawole John et al. (2025-05)
    Factors Affecting the Flexural Performance of Reinforced 3D Printed Concrete Beams
  19. Mesnil Romain, Rosa Pedro, Demont Léo (2025-03)
    Thickness Optimisation in 3D Printed Concrete Structures
  20. Versteege Jelle, Wolfs Robert, Salet Theo (2025-02)
    Data-Driven Additive Manufacturing with Concrete - Enhancing In-Line Sensory Data with Domain Knowledge:
    Part I: Geometry
  21. Sando Mona, Stephan Dietmar (2025-02)
    The Role of Mixing Sequence in Shaping the 3D-Printability of Geopolymers
  22. Senthilnathan Shanmugaraj, Raphael Benny (2025-02)
    Predicting Buildability Using the Surface Texture of 3D Printed Concrete Elements
  23. Ducoulombier Nicolas, Bono Victor, Kachkouch Fatima, Jacquet Yohan et al. (2025-01)
    From Laboratory to Practice
  24. Lu Haoyu, Zhang Lizhi, Wang Junkai, Shi Zhaoxin et al. (2024-11)
    Penetration-Test of Sheet-Like Indenter for Yield-Stress-Assessment of 3D Printed Concrete
  25. Chajec Adrian, Šavija Branko (2024-09)
    The Effect of Using Surface Functionalized Granite-Powder-Waste on Fresh Properties of 3D Printed Cementitious Composites
  26. Dörfler Kathrin, Dielemans Gido, Leutenegger Stefan, Jenny Ercan et al. (2024-09)
    Advancing Construction in Existing Contexts:
    Prospects and Barriers of 3D Printing with Mobile Robots for Building Maintenance and Repair
  27. Wolfs Robert (2024-09)
    The Status Quo of 3D Concrete Printing:
    Are We There Yet?
  28. Bos Derk, Lucas Sandra, Blaakmeer Jan, Salet Theo et al. (2024-09)
    Development of the On-Line Gravity-Induced Compression-Test:
    The Inverse-Slugs-Test
  29. Daneshvar Dana, Rabiei Mahsa, Gupta Shashank, Najmeddine Aimane et al. (2024-09)
    Geometric Fidelity of Interlocking Bodies in Two-Component Robotic Additive Manufacturing
  30. Wolfs Robert, Bos Derk, Caron Jean-François, Gerke Markus et al. (2024-08)
    On-Line and In-Line Quality-Assessment Across All Scale Levels of 3D Concrete Printing
  31. Kamakshi Tippabhotla, Thakur Manideep, Subramaniam Kolluru (2024-07)
    Formulating Printable Concrete Mixtures Based on Paste-Rheology and Aggregate-Content:
    Application to Alkali-Activated Binders
  32. Duan Jiaqi, Sun Shouzheng, Chi Shengfeng, Hu Chunyou et al. (2024-06)
    Effect of Process Parameters on Forming Quality and Flexural Strength of Continuous-Fiber-Reinforced Cement-Based 3D Printed Composites
  33. Shen Jing, Li Yujia, Zhang Xiaoman, Li Yangbo et al. (2024-06)
    Three-Dimensional Printable Concrete by an Ultra-Thin Nozzle and Fully-Sealed Extrusion
  34. Matos Paulo, Prigol Hellen, Schackow Adilson, Silva Nazário Samara et al. (2024-06)
    Quality-Control-Tests of Fresh 3D Printable Cement-Based Materials
  35. Roux Charlotte, Archez Julien, Gall Corentin, Saadé Myriam et al. (2024-04)
    Towards Sustainable Material:
    Optimizing Geopolymer Mortar Formulations for 3D Printing
  36. Tao Yaxin, Zhou Jiangang, Cui Weijiu, Shi Xinyu et al. (2024-04)
    Numerical Assessment of Plastic Yielding in Extrusion-Based 3D Concrete Printing
  37. Mechtcherine Viktor, Kuhn Alexander, Mai (née Dressler) Inka, Nerella Venkatesh et al. (2024-03)
    Additive Manufacturing with Concrete:
    Guidelines for Planning and Implementing Projects
  38. Silva Guido, Quispe Axcel, Baldoceda Jordan, Kim Suyeon et al. (2024-02)
    Additive Construction of Concrete Deep Beams Using Low-Cost Characterization Methods and FEM-Based Topological Optimization
  39. Bono Victor, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2023-12)
    Methodology for Formulating Low-Carbon Printable Mortar Through Particles-Packing-Optimization
  40. Hechtl Christian, Kränkel Thomas, Gehlen Christoph (2023-12)
    Near‐Nozzle Mixing for Additive Manufacturing of Cementitious Mortar:
    A Homogeneity Study
  41. Bos Derk, Wolfs Robert (2023-12)
    A Quality-Control Framework for Digital Fabrication with Concrete
  42. An Dong, Zhang Yixia, Yang Chunhui (2023-11)
    Numerical Modelling of 3D Concrete Printing:
    Material-Models, Boundary-Conditions and Failure-Identification
  43. Miranda Luiza, Jovanović Balša, Lesage Karel, Schutter Geert (2023-10)
    Geometric Conformability of 3D Concrete Printing Mixtures from a Rheological Perspective
  44. Demont Léo, Mesnil Romain, Ducoulombier Nicolas, Caron Jean-François (2023-10)
    Affordable In-Line Structuration Measurements of Printable Mortar with a Pocket-Shear-Vane
  45. Yin Yunchao, Huang Jian, Wang Tiezhu, Yang Rong et al. (2023-09)
    Effect of Hydroxypropyl-Methylcellulose on Rheology and Printability of the First Printed Layer of Cement Activated Slag-Based 3D Printing Concrete
  46. Hu Hailong, Huang Jian, Wang Tiezhu, Manuka Mesfin et al. (2023-09)
    Impact of Calcium Sulfoaluminate Cement on Printability and Early Strength Development of a Slag-Based 3D Printing Cementitious Material
  47. Rehman Atta, Perrot Arnaud, Birru Bizu, Kim Jung-Hoon (2023-09)
    Recommendations for Quality-Control in Industrial 3D Concrete Printing Construction with Mono-Component Concrete:
    A Critical Evaluation of Ten Test-Methods and the Introduction of the Performance-Index
  48. Jacquet Yohan, Perrot Arnaud (2023-07)
    Sewing Concrete Device:
    Combining In-Line Rheology-Control and Reinforcement-System for 3D Concrete Printing
  49. Varela Hugo, Barluenga Gonzalo, Perrot Arnaud (2023-07)
    Extrusion and Structural Build-Up of 3D Printing Cement-Pastes with Fly-Ash, Nano-Clay and VMAs
  50. Pott Ursula, Jakob Cordula, Wolf Julian, Stephan Dietmar (2023-06)
    Comparison of Physical and Physico-Chemical Methods for 3D Printing Application with the Focus on the Unconfined Uniaxial Compression-Test
  51. Graser Konrad, Walzer Alexander, Hunhevicz Jens, Jähne René et al. (2023-06)
    Qualitative Technology Evaluation of Digital Fabrication with Concrete:
    Conceptual Framework and Scoreboard
  52. Diab Zeinab, Do Duc, Rémond Sébastien, Hoxha Dashnor (2023-04)
    Probabilistic Prediction of Structural Failure During 3D Concrete Printing Processes
  53. Basha Shaik, Rehman Atta, Aziz Md, Kim Jung-Hoon (2023-02)
    Cement Composites with Carbon-Based Nanomaterials for 3D Concrete Printing Applications:
    A Review
  54. García Rodrigo, Dokladalova Eva, Dokládal Petr, Caron Jean-François et al. (2022-09)
    In-Line Monitoring of 3D Concrete Printing Using Computer-Vision
  55. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  56. Barjuei Erfan, Courteille Eric, Rangeard Damien, Marie F. et al. (2022-07)
    Real-Time Vision-Based Control of Industrial Manipulators for Layer-Width Setting in Concrete 3D Printing Applications
  57. Bos Derk, Wolfs Robert (2022-06)
    Automated Visual Inspection of Near-Nozzle Droplet-Formation for Quality-Control of Additive Manufacturing
  58. Kolawole John, Becker Daniel, Xu Jie, Dobrzanski James et al. (2022-06)
    Selected Test-Methods for Assessing Fresh and Plastic-State 3D Concrete Printing-Materials
  59. Roussel Nicolas, Buswell Richard, Ducoulombier Nicolas, Ivanova Irina et al. (2022-06)
    Assessing the Fresh Properties of Printable Cement-Based Materials:
    High-Potential Tests for Quality-Control
  60. Peerzada Abdul, Rangaraju Prasad, Roberts James, Biehl Adam (2022-03)
    Influence of External Vibration on the Gravitational Flow Characteristics of Cementitious Materials:
    A Perspective from Application in Additive Manufacturing
  61. Wolfs Robert, Salet Theo, Roussel Nicolas (2021-10)
    Filament-Geometry-Control in Extrusion-Based Additive Manufacturing of Concrete:
    The Good, the Bad and the Ugly
  62. Caron Jean-François, Demont Léo, Ducoulombier Nicolas, Mesnil Romain (2021-06)
    3D Printing of Mortar with Continuous Fibers:
    Principle, Properties and Potential for Application

BibTeX
@article{duco_mesn_carn_demo.2021.TSTfEBAM,
  author            = "Nicolas Ducoulombier and Romain Mesnil and Paul Carneau and Léo Demont and Hela Bessaies-Bey and Jean-François Caron and Nicolas Roussel",
  title             = "The “Slugs-Test” for Extrusion-Based Additive Manufacturing: Protocol, Analysis and Practical Limits",
  doi               = "10.1016/j.cemconcomp.2021.104074",
  year              = "2021",
  journal           = "Cement and Concrete Composites",
  volume            = "121",
}
Formatted Citation

N. Ducoulombier, “The “Slugs-Test” for Extrusion-Based Additive Manufacturing: Protocol, Analysis and Practical Limits”, Cement and Concrete Composites, vol. 121, 2021, doi: 10.1016/j.cemconcomp.2021.104074.

Ducoulombier, Nicolas, Romain Mesnil, Paul Carneau, Léo Demont, Hela Bessaies-Bey, Jean-François Caron, and Nicolas Roussel. “The “Slugs-Test” for Extrusion-Based Additive Manufacturing: Protocol, Analysis and Practical Limits”. Cement and Concrete Composites 121 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104074.