Application of Metaheuristic Optimization Algorithms in Predicting the Compressive Strength of 3D Printed Fiber-Reinforced Concrete (2023-12)¶
Alyami Mana, , , , Alabduljabbar Hisham, Najeh Taoufik, Gamil Yaser
Journal Article - Developments in the Built Environment, Vol. 17, No. 100307
Abstract
In recent years, the construction industry has been striving to make production faster and handle more complex architectural designs. Waste reduction, geometric freedom, lower construction costs, and speedy construction make the 3D-printed fiber-reinforced concrete (3DPFRC) alternative for future construction. However, achieving the optimum mixture composition for 3DPFRC remains a daunting task, entailing the consideration of multiple variables and necessitating an extensive trial-and-error experimental process. Therefore, this study investigated the application of different metaheuristic optimization algorithms to predict the compressive strength (CS) of 3DPFRC. A database of 299 data samples with 16 different input features was compiled from the experimental studies in the literature. Six metaheuristic algorithms, such as human felicity algorithm (HFA), differential evolution algorithm (DEA), nuclear reaction optimization (NRO), Harris hawks optimization (HHO), lightning search algorithm (LSA), and tunicate swarm algorithm (TSA) were applied to identify the optimal hyperparameter combination for the random forest (RF) model in predicting the CS of 3DPFRC. Different statistical metrics and 10-fold cross-validation were used to evaluate the accuracy of the models. The TSA-RF model exhibited superior performance compared to other models, achieving correlation (R), mean absolute error (MAE), and root mean square error (RMSE) values of 0.99, 2.10 MPa, and 3.59 MPa, respectively. The LSA-RF model also performed well, with R, MAE, and RMSE values of 0.99, 2.93 MPa, and 6.23 MPa, respectively. SHapley Additive exPlanation (SHAP) interpretability elucidates the intricate relationships between features and their effects on the CS, thereby offering invaluable insights for the performance-based mix proportion design of 3DPFRC.
¶
62 References
- Alchaar Aktham, Tamimi Adil (2020-10)
Mechanical Properties of 3D Printed Concrete in Hot Temperatures - Alyami Mana, Khan Majid, Fawad Muhammad, Nawahz R. et al. (2023-11)
Predictive Modeling for Compressive Strength of 3D Printed Fiber-Reinforced Concrete Using Machine Learning Algorithms - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Khayat Kamal et al. (2021-10)
Digital Fabrication of Eco-Friendly Ultra-High-Performance Fiber-Reinforced Concrete - Avrutis Daniel, Nazari Ali, Sanjayan Jay (2019-02)
Industrial Adoption of 3D Concrete Printing in the Australian Market - Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates - Chen Mingxu, Yang Lei, Zheng Yan, Li Laibo et al. (2021-01)
Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites - Chu Shaohua, Li Leo, Kwan Albert (2020-09)
Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate - Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Ghasemi Alireza, Naser Mohannad (2023-07)
Tailoring 3D Printed Concrete Through Explainable Artificial Intelligence - Giwa Ilerioluwa, Game Daniel, Ahmed Hassan, Noorvand Hassan et al. (2023-02)
Performance and Macrostructural Characterization of 3D Printed Steel-Fiber-Reinforced Cementitious Materials - Hambach Manuel, Möller Hendrik, Neumann Thomas, Volkmer Dirk (2016-08)
Portland-Cement-Paste with Aligned Carbon-Fibers Exhibiting Exceptionally High Flexural Strength (>100 MPa) - Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete - Izadgoshasb Hamed, Kandiri Amirreza, Shakor Pshtiwan, Laghi Vittoria et al. (2021-11)
Predicting Compressive Strength of 3D Printed Mortar in Structural Members Using Machine Learning - Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
Printability and Mechanical Anisotropy - Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
Buildability and Mechanical Properties of 3D Printed Concrete - Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
Test-Methods for 3D Printable Concrete - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Khoshnevis Behrokh, Bodiford Melanie, Burks Kevin, Ethridge Ed et al. (2005-01)
Lunar Contour Crafting:
A Novel Technique for ISRU-Based Habitat Development - Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
Development of the Construction Processes for Reinforced Additively Constructed Concrete - Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
Additive Construction:
State of the Art, Challenges and Opportunities - Li Zhijian, Wang Li, Ma Guowei (2020-01)
Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions - Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Lim Sungwoo, Buswell Richard, Valentine Philip, Piker Daniel et al. (2016-06)
Modelling Curved-Layered Printing Paths for Fabricating Large-Scale Construction Components - Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Marchment Taylor, Sanjayan Jay (2019-10)
Mesh Reinforcing Method for 3D Concrete Printing - Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
3D Printed Steel-Reinforcement for Digital Concrete Construction:
Manufacture, Mechanical Properties and Bond Behavior - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
Durability Properties of 3D Printed Concrete - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Pham Luong, Lin Xiaoshan, Gravina R., Tran Jonathan (2019-12)
Influence of PVA- and PP-Fibers at Different Volume Fractions on Mechanical Properties of 3D Printed Concrete - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Putten Jolien, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-08)
Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers - Ramezani Amir, Modaresi Shahriar, Dashti Pooria, Givkashi Mohammad et al. (2023-04)
Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures:
A Review - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Şahin Hatice, Mardani Ali (2021-12)
Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
A State of the Art Review - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Siddika Ayesha, Mamun Md., Ferdous Wahid, Saha Ashish et al. (2019-12)
3D Printed Concrete:
Applications, Performance, and Challenges - Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction - Uddin Md, Ye Junhong, Deng Boyu, Li Lingzhi et al. (2023-04)
Interpretable Machine Learning for Predicting the Strength of 3D Printed Fiber-Reinforced Concrete - Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails - Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process - Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
A Critical Review of the Use of 3D Printing in the Construction Industry - Xiao Jianzhuang, Chen Zixuan, Ding Tao, Zou Shuai (2021-10)
Bending Behavior of Steel-Cable-Reinforced 3D Printed Concrete in the Direction Perpendicular to the Interfaces - Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
A Cleaner Perspective on 3D Printing - Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing - Yang Yekai, Wu Chengqing, Liu Zhongxian, Zhang Hai (2021-12)
3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber - Yu Jing, Leung Christopher (2018-09)
Impact of 3D Printing-Direction on Mechanical Performance of Strain-Hardening Cementitious Composite (SHCC) - Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
3D Printable Engineered Cementitious Composites:
Fresh and Hardened Properties - Zareiyan Babak, Khoshnevis Behrokh (2017-06)
Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness - Zhang Yifan, Aslani Farhad (2021-08)
Development of Fiber-Reinforced Engineered Cementitious Composite Using Polyvinyl-Alcohol-Fiber and Activated Carbon-Powder for 3D Concrete Printing - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete
5 Citations
- Liu Shijie, Liu Tong, Alqurashi Muwaffaq, Abdou Elabbasy Ahmed et al. (2025-09)
Advancing 3D-Printed Fiber-Reinforced Concrete for Sustainable Construction:
A Comparative Optimization Based Study of Hybrid Machine Intelligence Models for Predicting Mechanical Strength and CO₂ Emissions - Syed Sajid, Abid Khasim, Khan Majid (2025-09)
An Interpretable Machine Learning Approach for Predicting Reinforcement Bond Performance in 3D Concrete Printing - Alizamir Meysam, Kim Sungwon, Ikram Rana, Ahmed Kaywan et al. (2025-06)
A Reliable Hybrid Extreme Learning Machine-Metaheuristic Framework for Enhanced Strength Prediction of 3D-Printed Fiber-Reinforced Concrete - Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
Materials, Engineered Properties and Techniques for Additive Manufacturing - Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
Concrete 3D Printing Technology in Sustainable Construction:
A Review on Raw Materials, Concrete Types and Performances
BibTeX
@article{alya_khan_jave_ali.2024.AoMOAiPtCSo3PFRC,
author = "Mana Alyami and Majid Khan and Muhammad Faisal Javed and Mujahid Ali and Hisham Alabduljabbar and Taoufik Najeh and Yaser Gamil",
title = "Application of Metaheuristic Optimization Algorithms in Predicting the Compressive Strength of 3D Printed Fiber-Reinforced Concrete",
doi = "10.1016/j.dibe.2023.100307",
year = "2024",
journal = "Developments in the Built Environment",
volume = "17",
pages = "100307",
}
Formatted Citation
M. Alyami, “Application of Metaheuristic Optimization Algorithms in Predicting the Compressive Strength of 3D Printed Fiber-Reinforced Concrete”, Developments in the Built Environment, vol. 17, p. 100307, 2024, doi: 10.1016/j.dibe.2023.100307.
Alyami, Mana, Majid Khan, Muhammad Faisal Javed, Mujahid Ali, Hisham Alabduljabbar, Taoufik Najeh, and Yaser Gamil. “Application of Metaheuristic Optimization Algorithms in Predicting the Compressive Strength of 3D Printed Fiber-Reinforced Concrete”. Developments in the Built Environment 17 (2024): 100307. https://doi.org/10.1016/j.dibe.2023.100307.