Flow and Deformation Behaviors of Cementitious Materials Through Nozzles with Different Geometric Parameters (2022-11)¶
10.1016/j.conbuildmat.2022.129605
, , Jiang Yaqing, Ji Xuping, Qi Rongqing
Journal Article - Construction and Building Materials, Vol. 360
Abstract
Nozzle geometric parameters are important to control the flow and deformation behaviors of printed filament. Choosing the right nozzle geometric parameters before the printing process is critical and requires considerable attention. In this study, nozzles with various geometric characteristics were designed and fabricated. Experiment and computational fluid dynamics (CFD) simulation were used to investigate the flow and deformation behaviour of printing ink via these nozzles. The results indicated that increasing of the area ratio of outlet to inlet AR (Aoutlet/Aintlet) and direction of material deposition θ will reduce the extrusion pressure. Changing the direction of material deposition θ is a critical means for controlling the printing pressure. Increasing of nozzle aspect ratio Ψ (Wn/Hn) and decreasing of direction of material deposition θ will reduces the deformation rate of deposited filament. This study may provide a theoretical guidance for the design and selection of nozzle before printing process.
¶
40 References
- Bard Joshua, Cupkova Dana, Washburn Newell, Zeglin Garth (2018-12)
Robotic Concrete Surface Finishing:
A Moldless Approach to Creating Thermally Tuned Surface Geometry for Architectural Building Components Using Profile 3D Printing - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2018-09)
Large-Scale Testing of Digitally Fabricated Concrete (DFC) Elements - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Carneau Paul, Mesnil Romain, Baverel Olivier, Roussel Nicolas (2022-03)
Layer Pressing in Concrete Extrusion-Based 3D Printing:
Experiments and Analysis - Cohen Zach (2021-03)
Recasting Concrete:
A Case Study in Concrete 3D Printing as an Architectural Pedagogy - Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics - He Lewei, Chow Wai, Li Hua (2020-06)
Effects of Inter-Layer Notch and Shear Stress on Inter-Layer Strength of 3D Printed Cement-Paste - He Lewei, Tan Jolyn, Chow Wai, Li Hua et al. (2021-11)
Design of Novel Nozzles for Higher Inter-Layer Strength of 3D Printed Cement-Paste - Lao Wenxin, Li Mingyang, Masia Lorenzo, Tan Ming (2017-08)
Approaching Rectangular Extrudate in 3D Printing for Building and Construction by Experimental Iteration of Nozzle Design - Lao Wenxin, Li Mingyang, Tjahjowidodo Tegoeh (2020-09)
Variable-Geometry Nozzle for Surface Quality Enhancement in 3D Concrete Printing - Lao Wenxin, Li Mingyang, Wong Teck, Tan Ming et al. (2020-02)
Improving Surface-Finish-Quality in Extrusion-Based 3D Concrete Printing Using Machine-Learning-Based Extrudate-Geometry-Control - Liu Zhixin, Li Mingyang, Weng Yiwei, Qian Ye et al. (2020-03)
Modelling- and Parameter-Optimization for Filament-Deformation in 3D Cementitious Material-Printing Using Support-Vector-Machine - Manikandan Karthick, Jiang Xuepeng, Singh Amit, Li Beiwen et al. (2020-06)
Effects of Nozzle Geometries on 3D Printing of Clay Constructs:
Quantifying Contour-Deviation and Mechanical Properties - McGee Wesley, Ng Tsz, Yu Kequan, Li Victor (2020-07)
Extrusion Nozzle Shaping for Improved 3DP of Engineered Cementitious Composites (ECC-SHCC) - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Mechtcherine Viktor, Fataei Shirin, Bos Freek, Buswell Richard et al. (2022-01)
Digital Fabrication with Cement-Based Materials:
Underlying Physics - Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders - Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction - Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar? - Pan Tinghong, Jiang Yaqing, He Hui, Wang Yu et al. (2021-01)
Effect of Structural Build-Up on Inter-Layer Bond Strength of 3D Printed Cement Mortars - Pan Tinghong, Jiang Yaqing, Ji Xuping (2022-03)
Inter-Layer Bonding Investigation of 3D Printing Cementitious Materials with Fluidity-Retaining Polycarboxylate-Superplasticizer and High-Dispersion Polycarboxylate Superplasticizer - Pan Tinghong, Teng Huaijin, Liao Hengcheng, Jiang Yaqing et al. (2022-03)
Effect of Shaping Plate Apparatus on Mechanical Properties of 3D Printed Cement-Based Materials:
Experimental and Numerical Studies - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Perrot Arnaud, Rangeard Damien, Courteille Eric (2018-04)
3D Printing of Earth-Based Materials:
Processing Aspects - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2022-02)
Extrusion-Process-Simulation and Layer-Shape-Prediction During 3D Concrete Printing Using the Particle-Finite-Element-Method - Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
3D Printed Concrete for Large-Scale Buildings:
An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Vallurupalli Kavya, Farzadnia Nima, Khayat Kamal (2021-01)
Effect of Flow Behavior and Process-Induced Variations on Shape Stability of 3D Printed Elements:
A Review - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Wolfs Robert, Salet Theo, Roussel Nicolas (2021-10)
Filament-Geometry-Control in Extrusion-Based Additive Manufacturing of Concrete:
The Good, the Bad and the Ugly - Xu Jie, Ding Lieyun, Cai Lixiong, Zhang Lichao et al. (2019-04)
Volume-Forming 3D Concrete Printing Using a Variable-Size Square Nozzle - Xu Yanqun, Yuan Qiang, Li Zemin, Shi Caijun et al. (2021-09)
Correlation of Inter-Layer Properties and Rheological Behaviors of 3DPC with Various Printing Time Intervals
7 Citations
- Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
A Systematic Review - Kiyani Muhammad, Hussain Syed, Emaan Rajja, Kamal Muhammad et al. (2025-08)
Influence of Process Parameters on 3D Concrete Printing:
A Step Towards Standardized Approaches - Zhang Ziqi, Pan Tinghong, Guoa Rongxin, Lin Runsheng et al. (2025-04)
Simulation and Analysis of Material Stacking and Migration Induced by Extrusion Behavior in 3D Printed Concrete - Olivo Nik, Piccioni Valeria, Milano Francesco, Gramazio Fabio et al. (2025-02)
Thermal Enhancement of Hollow-Core 3DP Through Nozzle Design Customization - Wei Ying, Han Song, Chen Ziwei, Lu Jianxian et al. (2024-04)
Numerical Simulation of 3D Concrete Printing Derived from Printer Head and Printing Process - Pan Tinghong, Guo Rongxin, Fu Chaoshu, Ji Xuping et al. (2023-10)
Extrusion-Based 3D Concrete Printing with Different Flow-Direction - Basha Shaik, Rehman Atta, Aziz Md, Kim Jung-Hoon (2023-02)
Cement Composites with Carbon-Based Nanomaterials for 3D Concrete Printing Applications:
A Review
BibTeX
@article{pan_guo_jian_ji.2022.FaDBoCMTNwDGP,
author = "Tinghong Pan and Rongxin Guo and Yaqing Jiang and Xuping Ji and Rongqing Qi",
title = "Flow and Deformation Behaviors of Cementitious Materials Through Nozzles with Different Geometric Parameters: Experimental and Numerical Approaches",
doi = "10.1016/j.conbuildmat.2022.129605",
year = "2022",
journal = "Construction and Building Materials",
volume = "360",
}
Formatted Citation
T. Pan, R. Guo, Y. Jiang, X. Ji and R. Qi, “Flow and Deformation Behaviors of Cementitious Materials Through Nozzles with Different Geometric Parameters: Experimental and Numerical Approaches”, Construction and Building Materials, vol. 360, 2022, doi: 10.1016/j.conbuildmat.2022.129605.
Pan, Tinghong, Rongxin Guo, Yaqing Jiang, Xuping Ji, and Rongqing Qi. “Flow and Deformation Behaviors of Cementitious Materials Through Nozzles with Different Geometric Parameters: Experimental and Numerical Approaches”. Construction and Building Materials 360 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129605.