Skip to content

In-Line Activation of Geopolymer-Slurry for Concrete 3D Printing (2022-10)

10.1016/j.cemconres.2022.107008

 Muthukrishnan Shravan,  Ramakrishnan Sayanthan,  Sanjayan Jay
Journal Article - Cement and Concrete Research, Vol. 162

Abstract

In-line activation techniques in concrete 3D printing enhance the buildability of fresh concrete without influencing its pumpability, thus enabling fast construction rates with long pumping durations. While the in-line activation of cementitious mixes with set-accelerators is a promising approach, the set-accelerators fail in geopolymer system. Therefore, this study investigates a new approach of attaining on-demand setting in geopolymer by alkali activation of binder slurry at the print head. The primary advantage of the proposed method is that the mix remains non-activated until it reaches the print head, thus facilitating a long pumping duration. It was found that the mix design parameters (i.e., precursors to activator ratio, fly ash to slag ratio etc.) and operating conditions (mixing duration of precursor slurry, stage wise activation etc.,) are critical in attaining the desired fresh concrete properties in geopolymer concrete. This is demonstrated by the fact that the optimum mix design chosen with 20 wt% of fly ash as precursor and the activator dosage of 35 wt% of binder showed a yield strength growth rate from ~500 Pa before activation to ~70 kPa in 20 min after activation. Moreover, this study provides a new insight into the potential benefits of polycarboxylate based superplasticiser, which was widely reported as an incompatible admixture for silicate activated geopolymer concrete.

21 References

  1. Bhattacherjee Shantanu, Santhanam Manu (2022-04)
    Investigation on the Effect of Alkali-Free Aluminium Sulfate-Based Accelerator on the Fresh Properties of 3D Printable Concrete
  2. Boscaro Federica, Quadranti Elia, Wangler Timothy, Mantellato Sara et al. (2022-02)
    Eco-Friendly, Set-on-Demand Digital Concrete
  3. Kashani Alireza, Ngo Tuan (2017-07)
    Optimization of Mixture-Properties for 3D Printing of Geopolymer Concrete
  4. Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
    Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars
  5. Kondepudi Kala, Subramaniam Kolluru (2021-02)
    Formulation of Alkali-Activated Fly-Ash-Slag Binders for 3D Concrete Printing
  6. Lu Bing, Zhu Weiping, Weng Yiwei, Liu Zhixin et al. (2020-02)
    Study of MgO-Activated-Slag as a Cementless Material for Sustainable Spray-Based 3D Printing
  7. Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-01)
    The Effect of Accelerator Dosage on Fresh Concrete Properties and on Inter-Layer Strength in Shotcrete 3D Printing
  8. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  9. Marchment Taylor, Sanjayan Jay, Nematollahi Behzad, Xia Ming (2019-02)
    Inter-Layer Strength of 3D Printed Concrete
  10. Marchment Taylor, Xia Ming, Dodd Elise, Sanjayan Jay et al. (2017-07)
    Effect of Delay-Time on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  11. Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
    Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing
  12. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-07)
    Buildability of Geopolymer Concrete for 3D Printing with Microwave-Heating
  13. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
    Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing
  14. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2021-06)
    Technologies for Improving Buildability in 3D Concrete Printing
  15. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2022-02)
    Set-on-Demand Geopolymer Using Print-Head Mixing for 3D Concrete Printing
  16. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  17. Pott Ursula, Stephan Dietmar (2021-04)
    Penetration-Test as a Fast Method to Determine Yield-Stress and Structural Build-Up for 3D Printing of Cementitious Materials
  18. Ramakrishnan Sayanthan, Kanagasuntharam Sasitharan, Sanjayan Jay (2022-05)
    In-Line Activation of Cementitious Materials for 3D Concrete Printing
  19. Ramakrishnan Sayanthan, Muthukrishnan Shravan, Sanjayan Jay, Pasupathy Kirubajiny (2021-08)
    Concrete 3D Printing of Lightweight Elements Using Hollow-Core Extrusion of Filaments
  20. Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
    Setting-on-Demand for Digital Concrete:
    Principles, Measurements, Chemistry, Validation
  21. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
    Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
    Possibilities and Challenges

31 Citations

  1. Murali Gunasekaran, Kravchenko Ekaterina, Yuvaraj Divya, Avudaiappan Siva (2025-12)
    Next-Generation Green Construction:
    3D-Printed Geopolymer Concrete with Optimized Rheology, Mechanical Performance, and Environmental Efficiency
  2. Shilar Fatheali, Shilar Mubarakali (2025-12)
    Performance-Based Analysis of 3D Printed Geopolymers Relating Durability, Microstructure, and Life Cycle Assessment
  3. Ghodke Swapnil, Singh Arshdeep, Singh Bhupinder, Chowdhury Shubhankar (2025-08)
    Additively Manufactured Smart Materials and Structures in Construction and Building Applications
  4. Mercimek Ömer, Şahin Oğuzhan, Çelik Alper, Ozkan Ekinci Mehmet et al. (2025-08)
    Structural Performance of Pre-Fabricated 3D Printed Concrete Walls:
    Effect of Cold Joint, Axial Load and Load Type
  5. Ye Chengjie, Xu Jie, Lacidogna Giuseppe (2025-06)
    Fracture Behavior of 3D Printed Geopolymer Concrete Containing Waste Ceramic
  6. Jaji Mustapha, Babafemi Adewumi, Zijl Gideon (2025-05)
    Mechanical Performance of Extrusion-Based Two-Part 3D-Printed Geopolymer Concrete:
    A Review of Advances in Laboratory and Real-Scale Construction Projects
  7. Demirbaş Ali, Tuğluca Merve, Şahin Oğuzhan, İlcan Hüseyin et al. (2025-05)
    A Comprehensive Study on the Valorization of Recycled Concrete Aggregates in 3D-Printable Cementitious Systems
  8. Tanyildizi Harun, Seloglu Maksut, Bakri Abdullah Mohd, Razak Rafiza et al. (2025-04)
    The Rheological and Mechanical Properties of 3D-Printed Geopolymers:
    A Review
  9. Ali Shah Syed, Zhang Shipeng, Xuan Dongxing, Poon Chi (2025-04)
    Development of a Novel Mixing Strategy for Set-on-Demand Printing of One-Part Geopolymer Using Municipal Solid Waste Incineration Bottom Ash and Blast Furnace Slag
  10. Sando Mona, Stephan Dietmar (2025-02)
    The Role of Mixing Sequence in Shaping the 3D-Printability of Geopolymers
  11. Sahoo Pitabash, Gupta Souradeep (2024-11)
    3D Printing with Geopolymer-Stabilized Excavated Earth:
    Enhancement of Printability and Engineering-Performance Through Controlled Retardation
  12. Günzel F., Moelich Gerrit, Kanyenze Simba, Kruger Jacques et al. (2024-11)
    Investigating Inherent Cement Setting Mechanisms to Improve the Constructability Performance of Extrusion-Based 3D Concrete Printing
  13. Perrot Arnaud, Jacquet Yohan, Caron Jean-François, Mesnil Romain et al. (2024-08)
    Snapshot on 3D Printing with Alternative Binders and Materials:
    Earth, Geopolymers, Gypsum and Low-Carbon Concrete
  14. Wangler Timothy, Tao Yaxin, Das Arnesh, Mahmoudi Matineh et al. (2024-08)
    Aluminate 2K Systems in Digital Concrete:
    Process, Design, Chemistry, and Outlook
  15. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2024-07)
    Set-on-Demand Geopolymer for Concrete 3D Printing Using Ternary Activator
  16. Ramakrishnan Sayanthan, Pasupathy Kirubajiny, Mechtcherine Viktor, Sanjayan Jay (2024-07)
    Two-Part Print-Head Mixing of Hybrid Alkali-Activated Cement for Buildability Enhancement in 3D Concrete Printing
  17. Barve Prasad, Bahrami Alireza, Shah Santosh (2024-07)
    A Comprehensive Review on Effects of Material-Composition, Mix-Design, and Mixing-Regimes on Rheology of 3D Printed Geopolymer Concrete
  18. Ramesh Akilesh, Rajeev Pathmanathan, Xu Shanqing, Sanjayan Jay et al. (2024-06)
    Impact Response of Textile-Reinforced 3D Printed Concrete Panels
  19. Basha Shaik, Nugraha Joshua, Rehman Atta, Choi Kichang et al. (2024-06)
    Structuration and Yield Strength Characterization of Hybrid Alkali-Activated Cement Composites for Ultra-Rapid 3D Construction Printing
  20. Ramesh Akilesh, Rajeev Pathmanathan, Sanjayan Jay, Mechtcherine Viktor (2024-06)
    In-Process Textile Reinforcement Method for 3D Concrete Printing and Its Structural Performance
  21. Ramakrishnan Sayanthan, Pasupathy Kirubajiny, Mechtcherine Viktor, Sanjayan Jay (2024-05)
    Print-Head Mixing of Geopolymer and OPC Slurries for Hybrid Alkali-Activated Cement in 3D Concrete Printing
  22. Sheng Zhaoliang, Zhu Binrong, Cai Jingming, Li Xuesen et al. (2024-03)
    Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete
  23. Ramesh Akilesh, Rajeev Pathmanathan, Sanjayan Jay (2024-02)
    Bond-Slip Behavior of Textile-Reinforcement in 3D Printed Concrete
  24. Kanagasuntharam Sasitharan, Ramakrishnan Sayanthan, Sanjayan Jay (2023-10)
    Investigating PCM Encapsulated NaOH Additive for Set-on-Demand in 3D Concrete Printing
  25. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2023-09)
    Rapid Early-Age Strength Development of In-Line Activated Geopolymer for Concrete 3D Printing
  26. Shilar Fatheali, Ganachari Sharanabasava, Patil Veerabhadragouda, Bhojaraja B. et al. (2023-08)
    A Review of 3D Printing of Geopolymer Composites for Structural and Functional Applications
  27. Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2023-08)
    Slag-Modified Fiber-Reinforced Metakaolin-Based Geopolymer for 3D Concrete Printing Application:
    Evaluating Fresh and Hardened Properties
  28. Khan Shoukat, İlcan Hüseyin, Aminipour Ehsan, Şahin Oğuzhan et al. (2023-07)
    Buildability-Analysis on Effect of Structural Design in 3D Concrete Printing:
    An Experimental and Numerical Study
  29. Tao Yaxin, Dai Xiaodi, Schutter Geert, Tittelboom Kim (2023-06)
    Set-on-Demand of Alkali-Activated Slag Mixture Using Twin-Pipe Pumping
  30. Rajeev Pathmanathan, Ramesh Akilesh, Navaratnam Satheeskumar, Sanjayan Jay (2023-04)
    Using Fiber Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing
  31. Quah Tan, Tay Yi, Lim Jian, Tan Ming et al. (2023-03)
    Concrete 3D Printing:
    Process-Parameters for Process-Control, Monitoring and Diagnosis in Automation and Construction

BibTeX
@article{muth_rama_sanj.2022.ILAoGSfC3P,
  author            = "Shravan Muthukrishnan and Sayanthan Ramakrishnan and Jay Gnananandan Sanjayan",
  title             = "In-Line Activation of Geopolymer-Slurry for Concrete 3D Printing",
  doi               = "10.1016/j.cemconres.2022.107008",
  year              = "2022",
  journal           = "Cement and Concrete Research",
  volume            = "162",
}
Formatted Citation

S. Muthukrishnan, S. Ramakrishnan and J. G. Sanjayan, “In-Line Activation of Geopolymer-Slurry for Concrete 3D Printing”, Cement and Concrete Research, vol. 162, 2022, doi: 10.1016/j.cemconres.2022.107008.

Muthukrishnan, Shravan, Sayanthan Ramakrishnan, and Jay Gnananandan Sanjayan. “In-Line Activation of Geopolymer-Slurry for Concrete 3D Printing”. Cement and Concrete Research 162 (2022). https://doi.org/10.1016/j.cemconres.2022.107008.