Skip to content

Performance Criteria, Environmental Impact and Cost-Assessment for 3D Printable Concrete Mixtures (2022-02)

10.1016/j.resconrec.2022.106255

 Mohan Manu,  Rahul Attupurathu, van Dam Benjamin, Zeidan Talina,  de Schutter Geert,  van Tittelboom Kim
Journal Article - Resources, Conservation and Recycling, Vol. 181

Abstract

Extrusion-based concrete 3D printing is a promising technology and has the potential for being a sustainable construction solution by utilizing structural optimization and reduced material usage. However, studies focusing on the sustainability assessment of 3D printable concrete mixtures are not many. In the current study, a quantitative assessment of the environmental and economic impact of multiple 3D printable concrete mixtures for the production of one cubic meter volume is performed. 3D printable concrete mixtures made with (i) different binder systems and (ii) increasing aggregate content and modified gradation of the aggregate skeleton by adding natural and recycled coarse aggregates, satisfying a set of performance criteria, were evaluated. It was observed that the use of calcium sulfoaluminate-limestone binder systems has significantly lower global warming potential; however, the depletion of fossil resources indicator is much higher than compared to the Portland cement-based mixtures. Increasing the aggregate content decreases environmental impact; however, incorporating recycled and coarse aggregates do not significantly decrease the environmental impact at a lower replacement level. Also, it was found that the contribution of the chemical admixtures to the total material cost is significantly higher in the case of 3D printbale concrete mixtures in comparison to the conventional mould cast mixtures. The study provides insights into the environmental and economic impact of extrusion-based concrete 3D printing materials satisfying the same functional requirements.

31 References

  1. Agustí-Juan Isolda, Habert Guillaume (2016-11)
    Environmental Design Guidelines for Digital Fabrication
  2. Batikha Mustafa, Jotangia Rahul, Baaj Mohamad, Mousleh Ibrahim (2021-12)
    3D Concrete Printing for Sustainable and Economical Construction:
    A Comparative Study
  3. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  4. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  5. Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
    Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
    An Experimental and Numerical Study
  6. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  7. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  8. He Yawen, Zhang Yamei, Zhang Chao, Zhou Hongyu (2020-05)
    Energy-Saving-Potential of 3D Printed Concrete Building with Integrated Living Wall
  9. Kaszyńska Maria, Skibicki Szymon, Hoffmann Marcin (2020-12)
    3D Concrete Printing for Sustainable Construction
  10. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  11. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-01)
    Early-Age Hydration, Rheology and Pumping Characteristics of CSA Cement-Based 3D Printable Concrete
  12. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  13. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-09)
    Inter-Layer Bond and Porosity of 3D Printed Concrete
  14. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-07)
    Evaluating the Influence of Aggregate Content on Pumpability of 3D Printable Concrete
  15. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  16. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  17. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  18. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  19. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  20. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  21. Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
    Microstructural Characterization of 3D Printed Cementitious Materials
  22. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  23. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  24. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
    Mechanical Characterization of 3D Printable Concrete
  25. Rahul Attupurathu, Sharma Abhishek, Santhanam Manu (2020-01)
    A Desorptivity-Based Approach for the Assessment of Phase Separation During Extrusion of Cementitious Materials
  26. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  27. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  28. Soto Borja, Agustí-Juan Isolda, Hunhevicz Jens, Joss Samuel et al. (2018-05)
    Productivity of Digital Fabrication in Construction:
    Cost and Time-Analysis of a Robotically Built Wall
  29. Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
    Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach
  30. Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
    Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing
  31. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion

30 Citations

  1. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
    Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
    A Bibliometric and Systematic Review
  2. Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2025-10)
    Dual Strategies for Enhancing Carbonation Curing in 3D Printing Steel Slag Mortars:
    Material Modification and Curing Process Innovation
  3. Alonso-Cañon Sara, Blanco-Fernandez Elena, Cuesta-Astorga Eva, Indacoechea-Vega Irune et al. (2025-09)
    Selection of the Best 3D Printing High-Performance Mortars Using Multi-Criteria Analysis
  4. Ramirez Rodriguez Fatima, Ahmad Rafiq (2025-09)
    Sustainable Technology Advances for Additive Construction:
    A State-of-the-Art Review
  5. Cui Weijiu, Guo Ruyi, Liu Wenliang, Da Wan et al. (2025-07)
    Quality Assessment of 3D‐Printed Concrete Through Quantitative Visual Inspection
  6. Mahdy Deena, Marais Eugene, Abdelrahim Marwa, Dubor Alexandre et al. (2025-06)
    Life Cycle Assessment of Earth-Based Residential Unit “TOVA”:
    A 3D Printed On-Site Load-Bearing Structure
  7. Tao Yaxin, Zhang Yi, Mohan Manu, Dai Xiaodi et al. (2025-05)
    Waste-Derived Aggregates in 3D Printable Concrete:
    Current Insights and Future Perspectives
  8. Nieświec Martyna, Chajec Adrian, Šavija Branko (2025-05)
    Effect of Ground Copper Slag on the Fresh Properties of 3d Printed Cementitious Composites
  9. Khanverdi Mohsen, Das Sreekanta (2025-05)
    Performance of Full-Scale 3D-Printed Concrete Walls:
    Effects of Vertical Reinforcements and Window Opening
  10. Thajeel Marwah, Kopecskó Katalin, Balázs György (2025-04)
    Enhancing Printability of 3D Printed Concrete by Using Metakaolin and Silica Fume
  11. Nieświec Martyna, Chajec Adrian (2025-03)
    Effect of Materials on the Properties of Fresh Cementitious Composites for 3D Printing:
    Short Review
  12. Hassan Amer, Alomayri Thamer, Noaman Mohammed, Zhang Chunwei (2025-01)
    3D Printed Concrete for Sustainable Construction:
    A Review of Mechanical Properties and Environmental Impact
  13. Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
    Sustainability Principles in 3D Concrete Printing:
    Analysing Trends, Classifying Strategies, and Future Directions
  14. Kaszyńska Maria, Skibicki Szymon (2024-11)
    Sustainable Development Approach for 3D Concrete Printing
  15. Sousa Israel, Alessandro Antonella, Mesquita Esequiel, Laflamme Simon et al. (2024-11)
    Comprehensive Review of 3D Printed Cementitious Composites with Carbon Inclusions:
    Current Status and Perspective for Self-Sensing Capabilities
  16. Colyn Markus, Babafemi Adewumi, Zijl Gideon (2024-09)
    Advancements in Sustainability of 3D Concrete Printing:
    Presenting Low-Carbon Mixtures for Additively Manufactured Concrete Structures in Practice
  17. Huseien Ghasan, Tan Shea, Saleh Ali, Lim Nor et al. (2024-08)
    Test-Procedures and Mechanical Properties of Three-Dimensional Printable Concrete Enclosing Different Mix-Proportions:
    A Review and Bibliometric Analysis
  18. Bekaert Michiel, Tittelboom Kim, Schutter Geert (2024-07)
    Influence of Curing Conditions on the Shrinkage Behavior of Three-Dimensional Printed Concrete Formwork
  19. An Dong, Zhang Yixia, Yang Chunhui (2024-05)
    Incorporating Coarse Aggregates into 3D Concrete Printing from Mixture Design and Process-Control to Structural Behavior and Practical Applications:
    A Review
  20. Tao Yaxin, Dai Xiaodi, Schutter Geert, Tittelboom Kim (2024-05)
    Adhesion Performance of Alkali-Activated Material for 3D Printing of Tunnel Linings at Different Temperatures
  21. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  22. Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
    Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders
  23. Singh Amardeep, Wang Yufei, Zhou Yiyi, Sun Junbo et al. (2023-10)
    Utilization of Antimony-Tailings in Fiber-Reinforced 3D Printed Concrete:
    A Sustainable Approach for Construction Materials
  24. Kurniati Eka, Kim Heejeong (2023-10)
    Utilizing Industrial Byproducts for Sustainable Three-Dimensional-Printed Infrastructure Applications:
    A Comprehensive Review
  25. Beersaerts Glenn, Soete Jeroen, Giels Michiel, Eykens Lies et al. (2023-09)
    3D Printing of an Iron-Rich Slag-Based Hybrid Mortar:
    A Durable, Sustainable and Cost-Competitive Product?
  26. Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
    3D Printing Concrete Structures:
    State of the Art, Challenges, and Opportunities
  27. Mohan Manu, Rahul Attupurathu, Stappen Jeroen, Cnudde Veerle et al. (2023-05)
    Assessment of Pore-Structure Characteristics and Tortuosity of 3D Printed Concrete Using Mercury-Intrusion-Porosimetry and X-Ray Tomography
  28. He Chuan, Zhang Shiyu, Liang Youwang, Ahmad Waqas et al. (2022-07)
    A Scientometric Review on Mapping Research Knowledge for 3D Printing Concrete
  29. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2022-06)
    Salt-Scaling-Resistance of 3D Printed Concrete
  30. Mohan Manu, Rahul Attupurathu, Tao Yaxin, Schutter Geert et al. (2022-06)
    Hydration Re-Initiation of Borated CSA Systems with a Two-Stage Mixing Process:
    An Application in Extrusion-Based Concrete 3D Printing

BibTeX
@article{moha_rahu_dam_zeid.2022.PCEIaCAf3PCM,
  author            = "Manu K. Mohan and Attupurathu Vijayan Rahul and Benjamin van Dam and Talina Zeidan and Geert de Schutter and Kim van Tittelboom",
  title             = "Performance Criteria, Environmental Impact and Cost-Assessment for 3D Printable Concrete Mixtures",
  doi               = "10.1016/j.resconrec.2022.106255",
  year              = "2022",
  journal           = "Resources, Conservation and Recycling",
  volume            = "181",
}
Formatted Citation

M. K. Mohan, A. V. Rahul, B. van Dam, T. Zeidan, G. de Schutter and K. van Tittelboom, “Performance Criteria, Environmental Impact and Cost-Assessment for 3D Printable Concrete Mixtures”, Resources, Conservation and Recycling, vol. 181, 2022, doi: 10.1016/j.resconrec.2022.106255.

Mohan, Manu K., Attupurathu Vijayan Rahul, Benjamin van Dam, Talina Zeidan, Geert de Schutter, and Kim van Tittelboom. “Performance Criteria, Environmental Impact and Cost-Assessment for 3D Printable Concrete Mixtures”. Resources, Conservation and Recycling 181 (2022). https://doi.org/10.1016/j.resconrec.2022.106255.