Skip to content

Mechanical Behavior of Hardened Printed Concrete and the Effect of Cold Joints (2024-12)

An Experimental Investigation

10.3390/ma17246304

 Glotz Theresa,  Rasehorn Inken,  Petryna Yuri
Journal Article - Materials, Vol. 17, Iss. 24, No. 6304

Abstract

The adaptation of 3D printing techniques within the construction industry has opened new possibilities for designing and constructing cementitious materials efficiently and flexibly. The layered nature of extrusion-based concrete printing introduces challenges, such as interlayer weaknesses, that compromise structural integrity and mechanical performance. This experimental study investigates the influence of interlayer orientation and the presence of cold joints (CJ) on mechanical properties, such as stiffness and strength. Three-point bending tests (3PBT) and optical measurement techniques are employed to correlate these properties with the structural response of hardened printed concrete. The analysis determines key properties like Young’s modulus and flexural tensile strength and evaluates them statistically. The investigation examines crack development and failure mechanisms, relating them to the material properties. The findings reveal a strong dependency of material properties and crack formation on layer orientation. Specimens with interlayers aligned parallel to the loading direction exhibit significantly inferior mechanical properties compared with other orientations. The presence of CJ considerably influences the progression of crack formation. This research contributes to a deeper understanding of the structural performance of printed concrete.

39 References

  1. Babafemi Adewumi, Kolawole John, Miah Md, Paul Suvash et al. (2021-06)
    A Concise Review on Inter-Layer Bond Strength in 3D Concrete Printing
  2. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  3. Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
    A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete
  4. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  5. Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
    Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography
  6. Cuevas Villalobos Karla, Strzałkowski Jarosław, Kim Ji-Su, Ehm Clemens et al. (2023-02)
    Towards Development of Sustainable Lightweight 3D Printed Wall Building Envelopes:
    Experimental and Numerical Studies
  7. Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
    Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
    A Critical Review
  8. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  9. Glotz Theresa, Petryna Yuri (2024-08)
    Experimental Characterization of Anisotropic Mechanical Behavior and Failure-Mechanisms of Hardened Printed Concrete
  10. Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
    Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing
  11. Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
    Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
    Measurement and Physical Origin
  12. Kumar Lalit, Dey Dhrutiman, Panda Biranchi, Muthu Nelson (2024-01)
    Experimental and Numerical Evaluation of Multi-Directional Compressive and Flexure Behavior of Three-Dimensional Printed Concrete
  13. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  14. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  15. Mechtcherine Viktor, Tittelboom Kim, Kazemian Ali, Kreiger Eric et al. (2022-04)
    A Roadmap for Quality-Control of Hardening and Hardened Printed Concrete
  16. Meurer Maximilian, Claßen Martin (2021-02)
    Mechanical Properties of Hardened 3D Printed Concretes and Mortars:
    Development of a Consistent Experimental Characterization-Strategy
  17. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2021-09)
    Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams
  18. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  19. Pan Tinghong, Jiang Yaqing, He Hui, Wang Yu et al. (2021-01)
    Effect of Structural Build-Up on Inter-Layer Bond Strength of 3D Printed Cement Mortars
  20. Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
    The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete
  21. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  22. Panda Biranchi, Tay Yi, Paul Suvash, Tan Ming (2018-05)
    Current Challenges and Future Potential of 3D Concrete Printing
  23. Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
    Microstructural Characterization of 3D Printed Cementitious Materials
  24. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  25. Sun Bochao, Dominicus Randy, Dong Enlai, Li Peichen et al. (2024-04)
    Predicting the Strength Development of 3D Printed Concrete Considering the Synergistic Effect of Curing-Temperature and Humidity:
    From Perspective of Modified Maturity-Model
  26. Surehali Sahil, Tripathi Avinaya, Neithalath Narayanan (2023-08)
    Anisotropy in Additively Manufactured Concrete Specimens Under Compressive Loading:
    Quantification of the Effects of Layer-Height and Fiber-Reinforcement
  27. Tang Yuxiang, Xiao Jianzhuang, Ding Tao, Liu Haoran et al. (2024-01)
    Trans-Layer and Inter-Layer Fracture Behavior of Extrusion-Based 3D Printed Concrete Under Three-Point Bending
  28. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  29. Thakur Manideep, Kulkarni Omkar, Kamakshi Tippabhotla, Paritala Spandana et al. (2023-09)
    Influence of Cold Joint on Fracture Behavior of 3D Printed Concrete
  30. Vespalec Arnošt, Novák Josef, Kohoutková Alena, Vosynek Petr et al. (2020-11)
    Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing
  31. Wang Ziyue, Chen Zixuan, Xiao Jianzhuang, Ding Tao (2023-03)
    Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar
  32. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  33. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  34. Wu Yiwen, Liu Chao, Bai Guoliang, Liu Huawei et al. (2024-05)
    Effect of Time Interval on the Inter-Layer Adhesion of 3D Printed Concrete with Recycled Sand:
    Multi-Factor Influencing Mechanisms and Superabsorbent Polymer Enhancement
  35. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  36. Zareiyan Babak, Khoshnevis Behrokh (2017-06)
    Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
    Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness
  37. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  38. Zhang Yu, Yang Lin, Qian Rusheng, Liu Guojian et al. (2023-07)
    Inter-Layer Adhesion of 3D Printed Concrete:
    Influence of Layer Stacked Vertically
  39. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

1 Citations

  1. Altehaini Zakiah, Dayili Mohammed, Alrajab Meshari, Harbi Adel et al. (2025-10)
    Deploying 3D Concrete Printing for Large-Scale Building Construction in Saudi Arabia:
    A Case Study

BibTeX
@article{glot_rase_petr.2024.MBoHPCatEoCJ,
  author            = "Theresa Glotz and Inken Jette Rasehorn and Yuri Petryna",
  title             = "Mechanical Behavior of Hardened Printed Concrete and the Effect of Cold Joints: An Experimental Investigation",
  doi               = "10.3390/ma17246304",
  year              = "2024",
  journal           = "Materials",
  volume            = "17",
  number            = "24",
  pages             = "6304",
}
Formatted Citation

T. Glotz, I. J. Rasehorn and Y. Petryna, “Mechanical Behavior of Hardened Printed Concrete and the Effect of Cold Joints: An Experimental Investigation”, Materials, vol. 17, no. 24, p. 6304, 2024, doi: 10.3390/ma17246304.

Glotz, Theresa, Inken Jette Rasehorn, and Yuri Petryna. “Mechanical Behavior of Hardened Printed Concrete and the Effect of Cold Joints: An Experimental Investigation”. Materials 17, no. 24 (2024): 6304. https://doi.org/10.3390/ma17246304.