Skip to content

Numerical and Theoretical Analysis of Pumping and Extrusion in 3D Concrete Printing (2025-10)

10.1007/s00170-025-16633-1

 Foulki Rida,  Mesoudy Mouad,  Cherkaoui Khalid
Journal Article - The International Journal of Advanced Manufacturing Technology

Abstract

Extrusion-based concrete printing, a key Industry 4.0 technology, is transforming construction by eliminating formwork and enabling complex geometries. This study presents an integrated numerical theoretical framework for predicting the pumping and extrusion behavior of cementitious mixtures in 3D concrete printing. Closed-form velocity profiles for fully developed laminar pipe flow of Herschel–Bulkley fluids with wall slip are revisited and benchmarked against experimental results from the literature for different concretes, showing that accounting for slip is essential to match observations (R2 > 0.86). Comparison of the original Bingham model with its Papanastasiou regularization shows near-identical fully developed velocity and wall shear rate, in excellent agreement with the regularized viscosity model implemented in Fluent (R2 > 0.99), thereby validating the regularized forms. Analytical predictions of pumping pressure drop agree with experimental data from the literature, with a maximum error of 13% at the lowest discharge rate (6 L/min). In addition, the proposed linearized analytical approximation outperforms the Madlener, Hanks, and Kaplan models, achieving errors ≤ 10%, although the simulations remain closer to the experimental results than the analytical model, particularly at higher flow rates (9 and 12 L/min). Classical extrusion theory is revised to include billet loss, thereby eliminating the nonphysical zero-pressure limit as the die-to-barrel diameter ratio approaches unity. The framework is further demonstrated on a representative mixture featuring an experimentally motivated lubricating layer. Overall, the results establish a consistent link between measurable rheological and tribological parameters and pump/extruder design variables in 3D concrete printing, highlighting the critical role of wall slip.

50 References

  1. Abbaoui Khalid, Korachi Issam, Jai Mostapha, Šeta Berin et al. (2024-04)
    3D Concrete Printing Using Computational Fluid Dynamics:
    Modeling of Material-Extrusion with Slip-Boundaries
  2. Akhrif Iatimad, Oulkhir Fatima, Jai Mostapha, Rihani Nadir et al. (2025-03)
    Earth-Based Materials 3D Printing, Extrudability and Buildability Numerical Investigations
  3. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  4. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  5. Biernacki Joseph, Bullard Jeffrey, Sant Gaurav, Banthia Nemkumar et al. (2017-04)
    Cements in the 21st Century:
    Challenges, Perspectives, and Opportunities
  6. Buswell Richard, Xu Jie, Becker Daniel, Dobrzanski James et al. (2022-04)
    Geometric Quality Assurance for 3D Concrete Printing and Hybrid Construction Manufacturing Using a Standardised Test Part for Benchmarking Capability
  7. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  8. Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
    Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
    An Experimental and Numerical Study
  9. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  10. Chen Yu, Veer Frederic, Çopuroğlu Oğuzhan, Schlangen Erik (2018-09)
    Feasibility of Using Low CO2 Concrete Alternatives in Extrusion-Based 3D Concrete Printing
  11. Choi Myoungsung, Roussel Nicolas, Kim Youngjin, Kim Jinkeun (2013-01)
    Lubrication-Layer Properties During Concrete Pumping
  12. Craveiro Flávio, Nazarian Shadi, Bártolo Helena, Bartolo Paulo et al. (2020-02)
    An Automated System for 3D Printing Functionally Graded Concrete-Based Materials
  13. Fataei Shirin, Secrieru Egor, Mechtcherine Viktor, Roussel Nicolas (2021-07)
    A First-Order Physical Model for the Prediction of Shear-Induced Particle-Migration and Lubricating-Layer Formation During Concrete Pumping
  14. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2021-05)
    Extrusion Rheometer for 3D Concrete Printing
  15. Jiao Dengwu, Shi Caijun, Schutter Geert (2021-11)
    Magneto-Rheology-Control in 3D Concrete Printing:
    A Rheological Attempt
  16. Kanagasuntharam Sasitharan, Ramakrishnan Sayanthan, Muthukrishnan Shravan, Sanjayan Jay (2023-05)
    Effect of Magnetorheological Additives on the Buildability of 3D Concrete Printing
  17. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  18. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  19. Lao Wenxin, Li Mingyang, Wong Teck, Tan Ming et al. (2020-02)
    Improving Surface-Finish-Quality in Extrusion-Based 3D Concrete Printing Using Machine-Learning-Based Extrudate-Geometry-Control
  20. Le H., Kadri Hadj, Aggoun Salima, Vierendeels Jan et al. (2015-01)
    Effect of Lubrication-Layer on Velocity-Profile of Concrete in a Pumping Pipe
  21. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  22. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  23. Mechtcherine Viktor, Nerella Venkatesh, Kasten Knut (2013-12)
    Testing Pumpability of Concrete Using Sliding-Pipe Rheometer
  24. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-01)
    Early-Age Hydration, Rheology and Pumping Characteristics of CSA Cement-Based 3D Printable Concrete
  25. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
    Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing
  26. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  27. Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
    3D Concrete Printing Success:
    An Exhaustive Diagnosis and Failure-Modes-Analysis
  28. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  29. Pegna Joseph (1997-02)
    Exploratory Investigation of Solid Freeform Construction
  30. Perrot Arnaud, Mélinge Yannick, Estellé Patrice, Lanos Christophe (2009-04)
    Vibro-Extrusion:
    A New Forming Process for Cement-Based Materials
  31. Perrot Arnaud, Mélinge Yannick, Rangeard Damien, Micaelli Francesca et al. (2012-06)
    Use of Ram Extruder as a Combined Rheo-Tribometer to Study the Behavior of High-Yield-Stress Fluids at Low Strain-Rate
  32. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  33. Perrot Arnaud, Rangeard Damien, Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Extrusion of Cement-Based Materials:
    An Overview
  34. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  35. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  36. Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
    Setting-on-Demand for Digital Concrete:
    Principles, Measurements, Chemistry, Validation
  37. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  38. Roussel Nicolas, Spangenberg Jon, Wallevik Jon, Wolfs Robert (2020-06)
    Numerical Simulations of Concrete Processing:
    From Standard Formative Casting to Additive Manufacturing
  39. Sanjayan Jay, Jayathilakage Roshan, Rajeev Pathmanathan (2020-11)
    Vibration-Induced Active Rheology-Control for 3D Concrete Printing
  40. Schutter Geert, Feys Dimitri (2016-11)
    Pumping of Fresh Concrete:
    Insights and Challenges
  41. Secrieru Egor, Cotardo Dario, Mechtcherine Viktor, Lohaus Ludger et al. (2018-04)
    Changes in Concrete Properties During Pumping and Formation of Lubricating Material Under Pressure
  42. Secrieru Egor, Khodor Jad, Schröfl Christof, Mechtcherine Viktor (2018-05)
    Formation of Lubricating Layer and Flow Type During Pumping of Cement-Based Materials
  43. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
    Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
    Possibilities and Challenges
  44. Tay Yi, Li Mingyang, Tan Ming (2019-04)
    Effect of Printing Parameters in 3D Concrete Printing:
    Printing Region and Support Structures
  45. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  46. Wangler Timothy, Pileggi Rafael, Gürel Şeyma, Flatt Robert (2022-03)
    A Chemical Process Engineering Look at Digital Concrete Processes:
    Critical Step Design, In-Line Mixing, and Scale-Up
  47. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  48. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  49. Zhang Nan, Xia Ming, Sanjayan Jay (2021-10)
    Short-Duration Near-Nozzle Mixing for 3D Concrete Printing
  50. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink

0 Citations

BibTeX
@article{foul_meso_cher.2025.NaTAoPaEi3CP,
  author            = "Rida Foulki and Mouad el Mesoudy and Khalid Cherkaoui",
  title             = "Numerical and Theoretical Analysis of Pumping and Extrusion in 3D Concrete Printing",
  doi               = "10.1007/s00170-025-16633-1",
  year              = "2025",
  journal           = "The International Journal of Advanced Manufacturing Technology",
}
Formatted Citation

R. Foulki, M. el Mesoudy and K. Cherkaoui, “Numerical and Theoretical Analysis of Pumping and Extrusion in 3D Concrete Printing”, The International Journal of Advanced Manufacturing Technology, 2025, doi: 10.1007/s00170-025-16633-1.

Foulki, Rida, Mouad el Mesoudy, and Khalid Cherkaoui. “Numerical and Theoretical Analysis of Pumping and Extrusion in 3D Concrete Printing”. The International Journal of Advanced Manufacturing Technology, 2025. https://doi.org/10.1007/s00170-025-16633-1.