Skip to content

Effects of Printing-Patterns and Loading-Directions on Fracture Behavior of 3D Printed Strain-Hardening Cementitious Composites (2024-05)

10.1016/j.engfracmech.2024.110155

 Du Guoqiang,  Qian Ye
Journal Article - Engineering Fracture Mechanics, No. 110155

Abstract

Strain-Hardening Cementitious Composites (SHCC) have gained widespread attention as self-reinforcing materials in 3D concrete printing. Meanwhile, owing to the layer-by-layer build-up process during extrusion-based 3D printing, interfaces have a significant impact on the fracture behavior of 3D printed concrete. In this study, 3D printed SHCC (3DP-SHCC) specimens were prepared with two printing patterns: parallel-printing and cross-printing. Cubic compressive strength tests and three-point bending tests of notched beams were conducted. The results showed that the compressive strength of 3DP-SHCC was 1.23 ∼ 1.45 times higher than that of mold-cast SHCC. Parallel-printed SHCC exhibited a significant degree of anisotropy. The initial and unstable fracture toughness (, ), flexural strength (Ff), and fracture energy (Gf) of parallel-printed SHCC in the X direction were 1.31, 1.81, 1.39, and 1.79 times those of mold-cast SHCC, respectively. In comparison, the cross-printed SHCC showed significantly lower anisotropy in the X and Y directions. By incorporating cohesive elements with the cohesive damage plasticity model, the fracture behavior of the 3DP-SHCC could be accurately simulated.

40 References

  1. Anton Ana-Maria, Reiter Lex, Wangler Timothy, Frangez Valens et al. (2020-12)
    A 3D Concrete Printing Prefabrication Platform for Bespoke Columns
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  4. Breseghello Luca, Hajikarimian Hamed, Jørgensen Henrik, Naboni Roberto (2023-07)
    3DLightBeam+:
    Design, Simulation, and Testing of Carbon-Efficient Reinforced 3D Concrete Printed Beams
  5. Ding Tao, Wang Ziyue, Liu Haoran, Xiao Jianzhuang (2023-03)
    Simulation on Pull-Out Performance of Steel-Bar from 3D Printed Concrete
  6. Du Guoqiang, Sun Yan, Qian Ye (2024-03)
    Flexural Performance of Nature-Inspired 3D Printed Strain-Hardening Cementitious Composites with Bouligand Structures
  7. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  8. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  9. Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
    Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing
  10. Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-12)
    Numerical Modelling-Strategies for Reinforced 3D Concrete Printed Elements
  11. Jacquet Yohan, Perrot Arnaud, Picandet Vincent (2020-11)
    Assessment of Asymmetrical Rheological Behavior of Cementitious Material for 3D Printing Application
  12. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  13. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  14. Kuzmenko Kateryna, Ducoulombier Nicolas, Féraille Adélaïde, Roussel Nicolas (2022-05)
    Environmental Impact of Extrusion-Based Additive Manufacturing:
    Generic Model, Power-Measurements and Influence of Printing-Resolution
  15. Leschok Matthias, Cheibas Ina, Piccioni Valeria, Seshadri Bharath et al. (2023-05)
    3D Printing Facades:
    Design, Fabrication, and Assessment Methods
  16. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  17. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  18. Liu Huawei, Liu Chao, Zhang Yamei, Bai Guoliang (2023-11)
    Bonding Properties Between 3D Printed Coarse Aggregate Concrete and Rebar Based on Interface Structural Characteristics
  19. Moini Mohamadreza, Baghaie Ahmadreza, Rodriguez Fabian, Zavattieri Pablo et al. (2021-06)
    Quantitative Microstructural Investigation of 3D Printed and Cast Cement-Pastes Using Micro-Computed Tomography- and Image-Analysis
  20. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2021-09)
    Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams
  21. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  22. Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
    Modelling of 3D Concrete Printing Process:
    A Perspective on Material and Structural Simulations
  23. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-08)
    3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC):
    Tailoring Fresh and Hardened State Properties
  24. Pang Zhiming, Lu Cong, Li Baoshan, Wang Jiajie (2023-02)
    A Multi-Scale Model for Quantifying Fiber-Orientation Effects on the Tensile Properties of 3D Printed Engineered Cementitious Composites
  25. Plessis Anton, Babafemi Adewumi, Paul Suvash, Panda Biranchi et al. (2020-12)
    Biomimicry for 3D Concrete Printing:
    A Review and Perspective
  26. Rui Aoyu, Wang Li, Lin Wenyu, Ma Guowei (2023-10)
    Experimental Study on Damage Anisotropy of 3D Printed Concrete Exposed to Sulfate-Attack
  27. Schuldt Steven, Jagoda Jeneé, Hoisington Andrew, Delorit Justin (2021-03)
    A Systematic Review and Analysis of the Viability of 3D Printed Construction in Remote Environments
  28. Tang Yuxiang, Xiao Jianzhuang, Ding Tao, Liu Haoran et al. (2024-01)
    Trans-Layer and Inter-Layer Fracture Behavior of Extrusion-Based 3D Printed Concrete Under Three-Point Bending
  29. Valle‐Pello P., Álvarez‐Rabanal Felipe, Alonso‐Martínez M., Coz Díaz J. (2019-05)
    Numerical Study of the Interfaces of 3D Printed Concrete Using Discrete Element Method
  30. Wang Li, Jiang Hailong, Li Zhijian, Ma Guowei (2020-02)
    Mechanical Behaviors of 3D Printed Lightweight Concrete Structure with Hollow Section
  31. Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
    Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process
  32. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  33. Wu Yun-Chen, Li Mo (2022-09)
    Effects of Early-Age Rheology and Printing Time Interval on Late-Age Fracture Characteristics of 3D Printed Concrete
  34. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  35. Xu Nuoyan, Qian Ye (2023-04)
    Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites
  36. Xu Nuoyan, Qian Ye, Yu Jing, Leung Christopher (2022-05)
    Tensile Performance of 3D Printed Strain-Hardening Cementitious Composites Considering Material-Parameters, Nozzle-Size and Printing-Pattern
  37. Yang Shutong, Lan Tian, Sun Zhongke, Xu Mingqi et al. (2022-03)
    A Predictive Model to Determine Tensile Strength and Fracture-Toughness of 3D Printed Fiber-Reinforced Concrete Loaded in Different Directions
  38. Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
    Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete
  39. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites
  40. Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
    3D Concrete Printing of Permanent Formwork for Concrete Column Construction

19 Citations

  1. Sun Yan, Du Guoqiang, Deng Xiaowei, Qian Ye (2026-01)
    Enhancing Fiber Alignment and Tensile Properties of 3D-Printed Ultra-High Performance Strain-Hardening Cementitious Composites by Nozzle Channel Design
  2. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  3. Sun Yan, Du Guoqiang, Mudasir Maryam (2025-11)
    Rheological Investigations of Fresh Fiber-Reinforced Cementitious Composites Using Hydrophobic / Hydrophilic UHMWPE Fibers for 3D Concrete Printing Evaluation
  4. Zhu Binrong, Liu Xuhua, Wei Yang, Pan Jinlong (2025-11)
    Predicting the Tensile Performance of 3D-Printed PE Fiber-Reinforced ECC Based on Micromechanics Model
  5. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  6. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  7. Yang Rijiao, Xu Chengji, You Xiufei, Li Xinze et al. (2025-09)
    Saddle Stitching-Enabled Interfacial Toughening in 3D Printed Concrete
  8. Chen Wenguang, Liang Long, Ye Junhong, Liu Lingfei et al. (2025-09)
    Machine Learning-Enabled Performance-Based Design of Three-Dimensional Printed Engineered Cementitious Composites
  9. Du Guoqiang, Deng Xiaowei, Qian Ye (2025-09)
    Biomimetic 3D Printed Herringbone-Bouligand Cementitious Composites for Ultra-High Impact Performance
  10. Yang Rijiao, Xu Chengji, Fang Sen, Li Xinze et al. (2025-07)
    Mechanistic Insights into Microstructural Changes Caused by Stapling in Extrusion-Based 3D Printed Concrete (3DPC)
  11. Sun Yan, Du Guoqiang, Deng Xiaowei, Qian Ye (2025-06)
    Effects of Nozzle Thickness on the Mechanical Properties of 3D Printable Ultra-High Performance Strain-Hardening Cementitious Composites (UHP-SHCC)
  12. Ye Huzi, He Qianpeng, Ping Pengxin, Pan Jinlong et al. (2025-06)
    Anisotropic Flexural Behavior and Energy Absorption of 3D Printed Engineered Cementitious Composites (3DP-ECC) Beams Under Low-Velocity Impact
  13. Du Guoqiang, Sun Yan, Qian Ye (2025-03)
    In-Plane and Out-of-Plane Compressive Performance of Bio-Inspired 3D Printed Strain-Hardening Cementitious Composite Lattice Structures
  14. Zhu Binrong, Zhang Yuhang, Ye Huzi, Wei Yang et al. (2025-03)
    Low-Velocity Impact Performance of Biomimetic 3D Printed Engineered Cementitious Composites Beams
  15. Chen Wenguang, Liang Long, Zhou Boyang, Ye Junhong et al. (2025-02)
    A Fracture Mechanics Model for Predicting Tensile Strength and Fracture Toughness of 3D Printed Engineered Cementitious Composites
  16. Shazad Qamar, Li Fangyuan (2025-01)
    Interfacial Bond-Effects on Shear-Strength and Damage in 3D Printed Concrete Structures:
    A Combined Experimental and Numerical Study
  17. Du Guoqiang, Qian Ye (2024-10)
    Bio-Inspired Innovations in 3D Concrete Printing:
    Structures, Materials and Applications
  18. Du Guoqiang, Sun Yan, Qian Ye (2024-10)
    Nature-Inspired Approach for Enhancing the Fracture Performance of 3D Printed Strain-Hardening Cementitious Composites (3DP-SHCC)
  19. Du Guoqiang, Sun Yan, Qian Ye (2024-08)
    3D Printed Strain-Hardening Cementitious Composites (3DP-SHCC) Reticulated Shell Roof Inspired by the Water Spider

BibTeX
@article{du_qian.2024.EoPPaLDoFBo3PSHCC,
  author            = "Guoqiang Du and Ye Qian",
  title             = "Effects of Printing-Patterns and Loading-Directions on Fracture Behavior of 3D Printed Strain-Hardening Cementitious Composites",
  doi               = "10.1016/j.engfracmech.2024.110155",
  year              = "2024",
  journal           = "Engineering Fracture Mechanics",
  pages             = "110155",
}
Formatted Citation

G. Du and Y. Qian, “Effects of Printing-Patterns and Loading-Directions on Fracture Behavior of 3D Printed Strain-Hardening Cementitious Composites”, Engineering Fracture Mechanics, p. 110155, 2024, doi: 10.1016/j.engfracmech.2024.110155.

Du, Guoqiang, and Ye Qian. “Effects of Printing-Patterns and Loading-Directions on Fracture Behavior of 3D Printed Strain-Hardening Cementitious Composites”. Engineering Fracture Mechanics, 2024, 110155. https://doi.org/10.1016/j.engfracmech.2024.110155.