Skip to content

3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method (2022-10)

Printability, Mechanical Properties and Pore-Structure

10.1016/j.jobe.2022.105404

Deng Zhicong,  Jia Zijian,  Zhang Chao, Wang Zhibin, Jia Lutao, Ma Lei, Wang Xianggang,  Zhang Yamei
Journal Article - Journal of Building Engineering

Abstract

It is a challenge to use porous lightweight aggregates to prepare 3D printing concrete as the water absorption process of porous lightweight aggregates has significant effect on its printability, especially when the content of lightweight aggregate is relatively high. In this paper, the effects of preparation methods on the rheological properties and printability of 3D printing lightweight aggregate (3DPLWC) are studied, aiming to prepare 3DPLWC with high lightweight aggregate content. 3DPLWC with 50, 75 and 100 vol.-% substitution of fine river sand with clay ceramsite sand (CCS) are successfully prepared with shell-packing-aggregate method. The mechanical properties and pore structure of 3DPLWC with different CCS contents are then studied. It is found that the printing process has caused the anisotropy of 3DPLWC, and the specific strength of 3DPLWC is lower than cast counterparts. For 3DPLWC, the increase of pre-wetted CCS content contributes to the decrease of matrix porosity and the increase of circularities of matrix pores in the printed specimens. The results of this study can provide guidance for the preparation of 3DPLWC with different density levels.

28 References

  1. Bos Freek, Menna Costantino, Pradena Mauricio, Kreiger Eric et al. (2022-03)
    The Realities of Additively Manufactured Concrete Structures in Practice
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
    Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography
  4. Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
    3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
    Rheological, Thermal and Mechanical Properties
  5. Dielemans Gido, Briels David, Jaugstetter Fabian, Henke Klaudius et al. (2021-04)
    Additive Manufacturing of Thermally Enhanced Lightweight Concrete Wall Elements with Closed Cellular Structures
  6. Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
    Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  7. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  8. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  9. Liu Chao, Xiong Yuanliang, Chen Yuning, Jia Lutao et al. (2022-01)
    Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete
  10. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  11. Matthäus Carla, Back Daniel, Weger Daniel, Kränkel Thomas et al. (2020-07)
    Effect of Cement-Type and Limestone-Powder-Content on Extrudability of Lightweight Concrete
  12. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  13. Mohammad Malek, Masad Eyad, Seers Thomas, Ghamdi Sami (2020-07)
    High-Performance Lightweight Concrete for 3D Printing
  14. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  15. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  16. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  17. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  18. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  19. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  20. Soto Borja, Agustí-Juan Isolda, Hunhevicz Jens, Joss Samuel et al. (2018-05)
    Productivity of Digital Fabrication in Construction:
    Cost and Time-Analysis of a Robotically Built Wall
  21. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  22. Wang Li, Jiang Hailong, Li Zhijian, Ma Guowei (2020-02)
    Mechanical Behaviors of 3D Printed Lightweight Concrete Structure with Hollow Section
  23. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  24. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  25. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  26. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  27. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  28. Zhao Zhihui, Chen Mingxu, Zhong Xu, Huang Yongbo et al. (2021-07)
    Effects of Bentonite, Diatomite and Metakaolin on the Rheological Behavior of 3D Printed Magnesium-Potassium-Phosphate-Cement Composites

22 Citations

  1. Kiyani Muhammad, Hussain Syed, Emaan Rajja, Kamal Muhammad et al. (2025-08)
    Influence of Process Parameters on 3D Concrete Printing:
    A Step Towards Standardized Approaches
  2. Zhang Chao, Ren Juanjuan, Zhang Shihao, Guo Yipu et al. (2025-07)
    Advanced Impact Resistance Design Through 3D-Printed Concrete Technology:
    Unleashing the Potential of Additive Manufacturing for Protective Structures
  3. Ali Syed, Haq Mohd, Khan Rizwan, Hashmi Ahmad (2025-07)
    A Comprehensive Review on 3D Printing of Concrete:
    Materials, Methods and Mechanical Properties
  4. Chourasia Ajay, Pal Biswajit, Kapoor Ashish (2025-02)
    Influence of Printing Direction and Interlayer Printing Time on the Bond Characteristics and Hardened Mechanical Properties of Agro-Industrial Waste-Based 3D Printed Concrete
  5. Wang Hailong, Shen Wenbin, Sun Xiaoyan, Song Xinlei et al. (2025-01)
    Influences of Particle-Size on the Performance of 3D Printed Coarse Aggregate Concrete:
    Experiment, Microstructure, and Mechanism Analysis
  6. Jiang Youbau, Gao Pengxiang, Adhikari Sondipon, Yao Xiaofei et al. (2024-12)
    Studies on the Mechanical Properties of Inter-Layer Interlocking 3D Printed Concrete Based on a Novel Nozzle
  7. Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
    Sustainability Principles in 3D Concrete Printing:
    Analysing Trends, Classifying Strategies, and Future Directions
  8. Yang Yekai, Zhang Chiyu, Liu Zhongxian, Dong Liang et al. (2024-10)
    Effect of Hydration Process on the Inter-Layer Bond Tensile Mechanical Properties of Ultra-High-Performance Concrete for 3D Printing
  9. Seo Eun-A, Lee Hojae (2024-10)
    Influence of Chemical Admixtures on Buildability and Deformation of Concrete for Additive Manufacturing
  10. Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
    On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements
  11. Aghaee Kamran, Li Linfei, Roshan Alireza, Namakiaraghi Parsa (2024-08)
    Additive Manufacturing Evolution in Construction:
    From Individual Terrestrial to Collective, Aerial, and Extraterrestrial Applications
  12. Liu Xiongfei, Cai Huachong, Sun Yuhang, Wang Li et al. (2024-08)
    Spray-Based 3D Printed Foam-Concrete:
    Cooperative Optimization for Lightweight and High-Strength Performance
  13. Jia Zijian, Kong Lingyu, Jia Lutao, Ma Lei et al. (2024-04)
    Printability and Mechanical Properties of 3D Printing Ultra-High-Performance Concrete Incorporating Limestone-Powder
  14. Ding Yahong, Zhang Yaqi, Zhao Yu, Zhang Meixiang et al. (2024-04)
    Impact of Pre-Soaked Lime-Water-Carbonized Recycled Fine Aggregate on Mechanical Properties and Pore-Structure of 3D Printed Mortar
  15. Niu Geng, Liu Chao, Jia Lutao, Ma Lei et al. (2024-03)
    Preparation and Performance-Analysis of 3D Printed Lightweight EPS-Concrete:
    Insights from the Excess-Paste-Theory
  16. Zeng Jun-Jie, Yan Zitong, Jiang Yuan, Li Pei-Lin (2024-02)
    3D Printing of FRP Grid and Bar Reinforcement for Reinforced Concrete Plates:
    Development and Effectiveness
  17. Pal Biswajit, Chourasia Ajay, Kapoor Ashish (2024-01)
    Intricacies of Various Printing Parameters on Mechanical Behavior of Additively Constructed Concrete
  18. Warsi Syed, Srinivas Dodda, Panda Biranchi, Biswas Pankaj (2023-12)
    Investigating the Impact of Coarse Aggregate Dosage on the Mechanical Performance of 3D Printable Concrete
  19. Bumanis Girts, Sapata Alise, Šinka Māris, Spuriņa Ella et al. (2023-10)
    Additive Manufacturing of Lightweight Gypsum and Expanded Polystyrene Granulate Composite
  20. Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
    Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
    A Review
  21. Liu Chao, Zhang Yamei, Banthia Nemkumar (2023-05)
    Unveiling Pore Formation and Its Influence on Micromechanical Property and Stress-Distribution of 3D Printed Foam-Concrete Modified with Hydroxypropyl-Methylcellulose and Silica-Fume
  22. Xu Nuoyan, Qian Ye (2023-04)
    Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites

BibTeX
@article{deng_jia_zhan_wang.2022.3PLACPwSPAM,
  author            = "Zhicong Deng and Zijian Jia and Chao Zhang and Zhibin Wang and Lutao Jia and Lei Ma and Xianggang Wang and Yamei Zhang",
  title             = "3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method: Printability, Mechanical Properties and Pore-Structure",
  doi               = "10.1016/j.jobe.2022.105404",
  year              = "2022",
  journal           = "Journal of Building Engineering",
}
Formatted Citation

Z. Deng, “3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method: Printability, Mechanical Properties and Pore-Structure”, Journal of Building Engineering, 2022, doi: 10.1016/j.jobe.2022.105404.

Deng, Zhicong, Zijian Jia, Chao Zhang, Zhibin Wang, Lutao Jia, Lei Ma, Xianggang Wang, and Yamei Zhang. “3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method: Printability, Mechanical Properties and Pore-Structure”. Journal of Building Engineering, 2022. https://doi.org/10.1016/j.jobe.2022.105404.